“大数据”一词对于互联网人的诱惑不可谓不大,在实际工作中也经常能看见他们纯熟运用的影子。而对于餐饮人,却对这个词报以“不明觉厉”的看法,事实上,对于以服务为主的餐饮行业大数据显得更为重要,接下来主要讲如何运用大数据来搞餐饮营销。
餐饮人要明白的大数据
首先要明白什么是大数据,所谓大数据其实就是:从大量的数据来源,取得高速更新、多形式、随时变化的复杂数据,并通过科技手段对其进行整合。而大数据应用于餐饮行业,就体现在顾客的消费行为如:支付、点单、评价、拍照分享、使用打折优惠、会员管理等等就是大数据的一些数据节点,产生这些数据节点的决策过程具有丰富的挖掘价值,能够反映顾客自身条件,并可以指导如何用产品和服务更好地满足顾客。
大数据的实现主要需要克服三大难题,第一让顾客自愿录入数据,第二让顾客完整录入数据,第三让顾客连续录入数据,这三大难题不仅需要强大的数据源头更需要卓越的技术开发能力。当前大数据在餐饮行业中的应用已经初现端倪,在C端(面向消费者)产品上,大众点评已经将原本简易的总体打分、平均消费、照片的评价体系做的越来越细分,增加了关键字可选项评价、推荐菜品评价,门店环境照片、菜品照片、价目表;而在B端(面向商家)的产品上,微餐谋APP也通过对接门店POS系统及微信点餐等方式实现顾客消费记录、顾客偏好、门店经营信息等详细数据的记录与分类,让门店经营实现数据化导向。
如何利用大数据做好营销
如何利用大数据做好营销,毕竟数据是机器计算出来的,在实际运行过程中却需要看到数据的人去具体施行。简单来说,利用大数据帮助经营者了解“目标消费者观看内容的时间,目标消费者人群的锁定,目标消费者感兴趣的内容”这三个营销活动中的重要因素,接着投其所好,目标消费者自然就会接踵而来。
以目前餐厅经常喜欢使用的微信来讲,一些专业的机构运作就会发展的很好,但商家自己做却无人问津?其主要就是由于微信拥有大量的数据分析基础,而只懂得经营的餐饮人对此一窍不通。微信营销不是一门简单的学问,从事媒体的人玩得转,每天招呼生意的人就不一定了。数据的价值在于指导我们有效利用资源,大数据的应用需要一种日常化、数据化、自动化的顾客营销方式。
数据到底要看什么?
餐饮中的目的是最有效的利用餐厅的空间和时间,下面从这几个维度来看:
空间维度:餐位使用率,餐桌使用率
时间维度:平均用餐时长
最终导向的就是每餐位小时收益(RevPASH)。
平均用餐时间,这个简单,利用POS系统里记录的开台和关台时间,求各个用餐时段的平均值。你会发现一件有趣的事,不同的用餐人数组合的平均用餐时间会略有不同,基本上用餐人数越多,时间越长。这张表大约会长这样。
餐位使用率跟大家熟悉的上座率属同源,都是拿资源的使用数量除以资源的可用数量,只不过餐位使用率更精细到每小时。餐桌使用率同理。
为了表现出各个时段的差异性,我们可以按每个小时每天的情况做一张图。
同样的,对每餐位小时收益,也可以做出这样一张图。
怎么更有效的看数据?
1. 分析比作图更重要
工具它就在这里,关键在于怎么用。通过数据和比较,发现问题,追本溯源,提出应对措施才是硬道理。比如平均用餐时长不短,方差也不小,那是不是可以改进出餐速度控制一下用餐时间;再比如上图的餐位使用率,周五周六比周中高出十个百分点,很可能是我们的目标客群决定的,一般的降价促销可能并不能增长多少生意,反而降低了客单价。这种时候,要开拓思路,结合自己餐厅的特点,做做主题活动,搞搞XX之夜之类拓宽销售群体,也是一次好的营销。
2. 数据要结合在一起看才有意义
数据会“说谎”,单看某一方面的数据会比较片面,很可能没有放映出真实情况。如果我们只看用餐时长,就会觉得五人和六人的晚餐耗时太长,不利于餐厅翻台。但仅凭这一点,不看每分钟消费,又怎么能断言五人和六人用餐是浪费了餐厅资源呢?
3. 回看历史的目的是为了预测未来
费这么大劲儿分析历史数据干嘛,当然是为了更好的应对未来。一是可以对未来有所把控,大约知道某一天客流量在什么段位,可以依此排兵布阵;二是可以及时采取应变措施,比如该达到的水平没有达到,那么就敲响警钟,需要拿出相对应的吸引政策。
餐饮人无需将“大数据”看作神圣而高不可攀的互联网产物,它其实就在我们身边,并且正在迅速应用于餐饮服务的过程里,更多的服务提供商开始考虑为做生意的人减轻运营负担,而作为餐饮从业者本身,生在这个时代是不幸的,也是幸运的,只要敞开心扉拥抱互联网,驾驭大数据为自己“开源节流”日进斗金,绝对不是痴人说梦。
Bingdata优网助帮汇聚多平台采集的海量数据,通过大数据技术的分析及预测能力为企业提供智能化的数据分析、运营优化、投放决策、精准营销、竞品分析等整合营销服务。
北京优网助帮信息技术有限公司(简称优网助帮)是以大数据为基础,并智能应用于整合营销的大数据公司,隶属于亨通集团。Bingdata是其旗下品牌。优网助帮团队主要来自阿里、腾讯、百度、金山、搜狐及移动、电信、联通、华为、爱立信等著名企业的技术大咖,兼有互联网与通信运营商两种基因,为大数据的算法分析提供强大的技术支撑。