平面坐标系内点与点之间的关系

如图,平面坐标系内点A( x a x_{a} xa, y a y_{a} ya)绕原点O逆时针旋转至点B( x b x_{b} xb, y b y_{b} yb),OB与OA的夹角为 θ \theta θ,试用矩阵表示点B与点A的关系。
:设OA的长度为r,OA与 x x x轴的夹角为 α \alpha α,则

x b x a = r c o s ( α + θ ) r c o s α = c o s α c o s θ − s i n α s i n θ c o s α = c o s θ − t a n α s i n θ = c o s θ − y a x a s i n θ \frac{x_{b}}{x_{a}} = \frac{rcos(\alpha + \theta)}{rcos\alpha} = \frac{cos\alpha cos\theta - sin\alpha sin\theta}{cos\alpha}=cos\theta - tan\alpha sin\theta = cos\theta - \frac{y_{a}}{x_{a}} sin\theta xaxb=rcosαrcos(α+θ)=cosαcosαcosθsinαsinθ=cosθtanαsinθ=cosθxayasinθ

y b y a = r s i n ( α + θ ) r s i n α = s i n α c o s θ + c o s α s i n θ s i n α = c o s θ + c o t α s i n θ = c o s θ + x a y a s i n θ \frac{y_{b}}{y_{a}} = \frac{rsin(\alpha + \theta)}{rsin\alpha} = \frac{sin\alpha cos\theta + cos\alpha sin\theta}{sin\alpha}=cos\theta + cot\alpha sin\theta = cos\theta + \frac{x_{a}}{y_{a}} sin\theta yayb=rsinαrsin(α+θ)=sinαsinαcosθ+cosαsinθ=cosθ+cotαsinθ=cosθ+yaxasinθ

移项得
x b = x a c o s θ − y a s i n θ x_{b} = x_{a} cos\theta - y_{a} sin\theta xb=xacosθyasinθ

y b = x a s i n θ + y a c o s θ y_{b} = x_{a} sin\theta + y_{a} cos\theta yb=xasinθ+yacosθ

写成矩阵的表示方式
[ x b y b ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ x a y a ] \begin{bmatrix} x_{b} \\ y_{b} \end{bmatrix} = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} x_{a} \\ y_{a} \end{bmatrix} [xbyb]=[cosθsinθsinθcosθ][xaya]

延伸:OB以原点缩放 λ \lambda λ倍至点C( x c x_{c} xc, y c y_{c} yc),即 ∣ O C ∣ = λ ∣ O B ∣ \left | OC \right | = \lambda \left | OB \right | OC=λOB,则
[ x c y c ] = [ λ 0 0 λ ] [ x b y b ] = [ λ 0 0 λ ] [ c o s θ − s i n θ s i n θ c o s θ ] [ x a y a ] = [ λ c o s θ − λ s i n θ λ s i n θ λ c o s θ ] [ x a y a ] \begin{bmatrix} x_{c} \\ y_{c} \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} x_{b} \\ y_{b} \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} x_{a} \\ y_{a} \end{bmatrix} = \begin{bmatrix} \lambda cos\theta & -\lambda sin\theta \\ \lambda sin\theta & \lambda cos\theta \end{bmatrix} \begin{bmatrix} x_{a} \\ y_{a} \end{bmatrix} [xcyc]=[λ00λ][xbyb]=[λ00λ][cosθsinθsinθcosθ][xaya]=[λcosθλsinθλsinθλcosθ][xaya]
由此可知,平面坐标系内任意一点和另外一点都可以确定一个矩阵变换,这个变换是规律性的旋转、缩放。可以看出矩阵向量是正交的,原因是在正交坐标系下推导导致的,如果这个矩阵是任意的2x2矩阵,代表的意义是什么?参考点积和投影

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值