大数据学习之Linux——08用户权限

1、创建用户:

useradd 用户名

2、设置密码

passwd 密码

3、删除用户:

userdel -r 用户名

若使用userdel haha命令删除该用户时,并不能删除该用户的所有信息,只是删除了
/etc/passwd、/etc/shadow、/etc/group/、/etc/gshadow四个文件里的该账户和组的信息。
默认情况下创建一个用户账号,会创建一个家目录和一个用户邮箱(在/var/spool/mail目录
以用户名命名),如果创建相同用户名时,会提醒用户已存在,需要单独删掉这两个目录

4、用户切换

su 用户切换

root 用户切换到普通用户不需要密码,普通用户切换需要输入密码

5、创建两用户(hjf01、hjf02)公用文件夹:

  1. root用户创建一个目录,此时创建的文件夹属主和属组都属于root用户,这两个用户并不能访问:
    在这里插入图片描述

  2. 创建分组:
    groupadd 分组名
    在这里插入图片描述

  3. 为用户分配组

usermod -a -G 组名 用户名

其中 -a表示添加 -G表示组别

在这里插入图片描述

  1. 让刚才创建的组别持有刚才所创建的文件夹:
    在这里插入图片描述

  2. 权限分配:

    为组分配权限,并去除其他用户的权限。
    此时,组可以访问文件夹,用户属于组。所以用户可以操作文件夹中的内容。但是组能对文件夹操作的权限只有读和执行,所以还需要分配权限。

    在这里插入图片描述

  3. 文件权限分配

    此时用户创建的文件还是只有自身才能修改

    在这里插入图片描述

  • 方法1:修改文件的属组
    在这里插入图片描述

  •  方法 2:修改文件other的权限
    

    因为现在只有这两个用户能进该文件夹,所以other也只能另一个用户访问

    在这里插入图片描述

6、同时给文件夹中的所有文件分配属组

chown -R 属主:属组 目录名

此时文件夹中的所有文件都将按照指定东西分配权限。

7、权限分配补充

• 文件权限:9位,每3位一组,3组 权限(U,G,O)每一组:rwx(读,写,执行),
U:文件的属主
G:文件的属组
O:other
权限除了用rwx表示外,还可以用数字表示
r-- :相当于100 --> 4
-w-:相当于010 --> 2
–x :相当于001 -->1
如果拥有rwx权限,所有也表示为7

chmod 666 hjf.txt
相当于给UGO三个用户都赋r、w权限
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值