POJ - 1410 Intersection (线段是否与矩形相交 或 被覆盖 模板)

链接:https://cn.vjudge.net/problem/POJ-1410

题意:判断一条线段是否与矩形相交或被覆盖。

思路:直接判断线段是否与矩形相交,再特判线段是否在矩形内即可。(坑点,说是给左上和右下的坐标,但要你自己确定。)外加kuangbin大神的模板

#include <cstdio>
#include <iostream>
#include <cmath>
#define ll long long
using namespace std;
const double eps = 1e-8;
const int N = 10;
int sgn(double x)
{
	if(fabs(x)<eps) return 0;
	else if(x<0) return -1;
	else return 1;
}
struct Point
{
	double x,y;
	Point(){}
	Point(double x,double y):x(x),y(y){}
	Point operator -(const Point& b)const//相减 
	{
		return Point(x-b.x,y-b.y);
	}
	double operator ^(const Point& b)const//叉乘 
	{
		return x*b.y-y*b.x;
	}
	double operator *(const Point& b)const//点乘 
	{
		return x*b.x+y*b.y;
	}
}s,e;
struct Line
{
	Point s,e;
	Line(){}
	Line(Point ss,Point ee){ s=ss,e=ee;}
}ls[N],l;
int n;
double x1,y1,x2,y2;
double xle,yle,xt,yt;
double dist(Point a,Point b)
{
	return sqrt((a-b)*(a-b));
}
//判断线段相交 
bool inter(Line l1,Line l2)
{
	return max(l1.s.x,l1.e.x)>=min(l2.s.x,l2.e.x)
	&& max(l2.s.x,l2.e.x)>=min(l1.s.x,l1.e.x)
	&& max(l1.s.y,l1.e.y)>=min(l2.s.y,l2.e.y)
	&& max(l2.s.y,l2.e.y)>=min(l1.s.y,l1.e.y)
	&& sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s))<=0
	&& sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s))<=0;
}

int main(void)
{
	bool flag;
	int t;
	scanf("%d",&t);
	while(t--)
	{
		flag=0;
		scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
		l=Line(Point(x1,y1),Point(x2,y2));
		scanf("%lf%lf%lf%lf",&xle,&yle,&xt,&yt);
		if(xle>xt) swap(xle,xt);
		if(yt>yle) swap(yle,yt);
		ls[1]=Line(Point(xle,yle),Point(xle,yt));			
		ls[2]=Line(Point(xle,yle),Point(xt,yle));
		ls[3]=Line(Point(xle,yt),Point(xt,yt));
		ls[4]=Line(Point(xt,yle),Point(xt,yt));
		for(int i=1;i<=4;i++)
			if(inter(l,ls[i]))
				flag=1;
		if((xle<=x1&&x1<=xt)&&(yt<=y1&&y1<=yle)
		&& (xle<=x2&&x2<=xt)&&(yt<=y2&&y2<=yle))
			flag=1;	
		flag?puts("T"):puts("F");	
	}
		
	return 0;
}
/************************************************************
 * Author        : kuangbin
 * Email         : kuangbin2009@126.com
 * Last modified : 2013-07-15 10:14
 * Filename      : POJ1410Intersection.cpp
 * Description   :
 * *********************************************************/

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>

using namespace std;

const double eps = 1e-6;
int sgn(double x)
{
    if(fabs(x) < eps)return 0;
    if(x < 0)return -1;
    else return 1;
}
struct Point
{
    double x,y;
    Point(){}
    Point(double _x,double _y)
    {
        x = _x;y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x,y - b.y);
    }
    //叉积
    double operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    //点积
    double operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
    //绕原点旋转角度B(弧度值),后x,y的变化
    void transXY(double B)
    {
        double tx = x,ty = y;
        x = tx*cos(B) - ty*sin(B);
        y = tx*sin(B) + ty*cos(B);
    }
};
struct Line
{
    Point s,e;
    Line(){}
    Line(Point _s,Point _e)
    {
        s = _s;e = _e;
    }
    //两直线相交求交点
    //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
    //只有第一个值为2时,交点才有意义
    pair<int,Point> operator &(const Line &b)const
    {
        Point res = s;
        if(sgn((s-e)^(b.s-b.e)) == 0)
        {
            if(sgn((s-b.e)^(b.s-b.e)) == 0)
                return make_pair(0,res);//重合
            else return make_pair(1,res);//平行
        }
        double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
        res.x += (e.x-s.x)*t;
        res.y += (e.y-s.y)*t;
        return make_pair(2,res);
    }
};

//判断线段相交
bool inter(Line l1,Line l2)
{
    return
    max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
    max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
    max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
    max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
    sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0 &&
    sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= 0;
}

//判断点在线段上
//判断点在线段上
bool OnSeg(Point P,Line L)
{
    return
    sgn((L.s-P)^(L.e-P)) == 0 &&
    sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 &&
    sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;
}
//判断点在凸多边形内
//点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
//点的编号:0~n-1
//返回值:
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inConvexPoly(Point a,Point p[],int n)
{
    for(int i = 0;i < n;i++)
    {
        if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1;
        else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0;
    }
    return 1;
}
//判断点在任意多边形内
//射线法,poly[]的顶点数要大于等于3,点的编号0~n-1
//返回值
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inPoly(Point p,Point poly[],int n)
{
    int cnt;
    Line ray,side;
    cnt = 0;
    ray.s = p;
    ray.e.y = p.y;
    ray.e.x = -100000000000.0;//-INF,注意取值防止越界

    for(int i = 0;i < n;i++)
    {
        side.s = poly[i];
        side.e = poly[(i+1)%n];

        if(OnSeg(p,side))return 0;

        //如果平行轴则不考虑
        if(sgn(side.s.y - side.e.y) == 0)
            continue;

        if(OnSeg(side.s,ray))
        {
            if(sgn(side.s.y - side.e.y) > 0)cnt++;
        }
        else if(OnSeg(side.e,ray))
        {
            if(sgn(side.e.y - side.s.y) > 0)cnt++;
        }
        else if(inter(ray,side))
            cnt++;
    }
    if(cnt % 2 == 1)return 1;
    else return -1;
}
int main()
{
    int T;
    double x1,y1,x2,y2;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
        Line line = Line(Point(x1,y1),Point(x2,y2));
        scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
        if(x1 > x2)swap(x1,x2);
        if(y1 > y2)swap(y1,y2);
        Point p[10];
        p[0] = Point(x1,y1);
        p[1] = Point(x2,y1);
        p[2] = Point(x2,y2);
        p[3] = Point(x1,y2);
        if(inter(line,Line(p[0],p[1])))
        {
            printf("T\n");
            continue;
        }
        if(inter(line,Line(p[1],p[2])))
        {
            printf("T\n");
            continue;
        }
        if(inter(line,Line(p[2],p[3])))
        {
            printf("T\n");
            continue;
        }
        if(inter(line,Line(p[3],p[0])))
        {
            printf("T\n");
            continue;
        }
        if(inConvexPoly(line.s,p,4) >= 0 || inConvexPoly(line.e,p,4) >= 0)
        {
            printf("T\n");
            continue;
        }
        printf("F\n");
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值