POJ - 1088 滑雪(DP+贪心)

链接:https://vjudge.net/problem/POJ-1088

题意:给你n,m,再给一个n*m的矩阵(h[n][m])。可以往相邻的四个位置走,前提是当前h要大于下一个位置的h,求最长的长度。也就是求最长严格下降子序列的长度。

思路:贪心的思想,肯定是高度大的更新高度小的。用一个优先队列就好了,把位置全放入队列,大的先出队列,并更新可到达的位置。

状态:dp[i][j]:表示以(i,j)位置为终点的最长序列的长度。

PS:想到要从大的往小的更新了,没想到用优先队列。。。。。。。。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int N = 110;
int dp[N][N],h[N][N];
int nex[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
struct node
{
	int x,y,h;
	node(){}
	node(int x,int y,int h):x(x),y(y),h(h){}
	friend bool operator <(const node& a,const node& b)
	{
		return a.h<b.h;
	}
}now;
priority_queue<node> q;
int main(void)
{
	int n,m,nx,ny,ans=1;
	scanf("%d%d",&n,&m);
	
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			scanf("%d",&h[i][j]);
			q.push(node(i,j,h[i][j]));
			dp[i][j]=1;
		}
	while(!q.empty())
	{
		now=q.top();
		q.pop();
		for(int i=0;i<4;i++)
		{
			nx=now.x+nex[i][0];
			ny=now.y+nex[i][1];
			if(nx<1||nx>n||ny<1||ny>m) continue;
			if(h[nx][ny]<now.h)
				dp[nx][ny]=max(dp[nx][ny],dp[now.x][now.y]+1);			
		}					
	}
	for(int i=1;i<=n;i++)
	for(int j=1;j<=m;j++)
		if(ans<dp[i][j])
			ans=dp[i][j];								
	printf("%d\n",ans);
	return 0;	
} 

 

题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值