题意分析
一开始用的dfs 果断超时
后来想了一下,用DP是否可行
这样思考,首先从高到低给所有格子排序。由于只能从高处往地处滑,所以我就从高处向地处递推。
dp[i][j]dp[i][j]就表示从格子ii行列 最大第几次能访问到。 样例中数字1所在的位置就为25,即为答案所求。
由于是从高向低递推,初始状态就是所有最高的地域:
dp[x][y]=0dp[x][y]=0
然后从最高的点向四个方向试探,如果某个方向的格子比当前格子低,那么进行状态转移:
dp[nx][ny]=max(dp[nx][ny],dp[x][y]+1)dp[nx][ny]=max(dp[nx][ny],dp[x][y]+1)
最后扫描一遍,找出dp的最大值,即为答案。
时间复杂度 (n∗m)log(n∗m)(n∗m)log(n∗m) 主要花在排序上
代码总览
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
const int nmax = 105;
const int INF = 0x3f3f3f3f;
const int nx[4] = {0,0,1,-1};
const int ny[4] = {1,-1,0,0};
int mp[nmax][nmax];
int dp[nmax][nmax];
int n,m,sx,sy;
struct point{
int x,y,h;
}p[nmax*nmax];
bool cmp(point a, point b){
return a.h > b.h;
}
bool isleagal(int x, int y){
if(x<0 || x>=n || y<0 || y>=m) return false;
else return true;
}
void getdp(int x, int y){
for(int i = 0;i<4;++i){
int xx = x + nx[i];
int yy = y + ny[i];
if(isleagal(xx,yy) && mp[xx][yy] < mp[x][y]){
dp[xx][yy] = max(dp[xx][yy],dp[x][y]+1);
}
}
}
int main(){
// freopen("in.txt","r",stdin);
while(scanf("%d %d",&n,&m)!=EOF){
memset(mp,0,sizeof mp);
memset(dp,0,sizeof dp);
int cnt = 0;
for(int i = 0;i<n;++i){
for(int j = 0;j<m;++j){
scanf("%d",&mp[i][j]);
dp[i][j] = 1;
p[cnt].x = i;
p[cnt].y = j;
p[cnt++].h = mp[i][j];
}
}
sort(p,p+n*m,cmp);
for(int i = 0;i<cnt;++i){
getdp(p[i].x,p[i].y);
}
int ans = -INF;
for(int i = 0;i<n;++i){
for(int j = 0;j<m;++j){
ans = max(ans,dp[i][j]);
}
}
printf("%d\n",ans);
}
return 0;
}