【图形学概览】几何折叠 Geometric Folding

本文概述了折纸艺术与几何折叠的研究领域,包括1D的机械连杆、2D的纸张折叠和3D的多面体。介绍了折痕图、基形和折纸艺术中的各种技术,如One Complete Straight Cut、棋盘格折叠等。文章引用了Erik Demaine和Joseph O'Rourke的著作,并提及了ORIPA软件在检测可折叠性方面的作用。
摘要由CSDN通过智能技术生成

前面

折纸一直是一个非常有魅力的艺术形式,然后趁着有空整理了一下,主要是一些相关的研究领域,顺便作为我闲置已久专题的第一讲。
基本都点到为止不做深入研究了(因为很多内容其实我自己也没深入的理解),主要是考虑缺少相应中文资料,希望这个介绍能带给大家一个粗略的认识。
可能会随着我的了解而更新。(咕咕咕)


主要参考:
MIT 几何折叠课程 https://courses.csail.mit.edu/6.849/spring17/
这个课网易云课堂有前面一些的翻译。虽然看不太懂还是觉得很好……

大部分的配图来自这门课的课本
Geometric Folding Algorithms: Linkages, Origami, Polyhedra by Erik Demaine and Joseph O’Rourke, published by Cambridge University Press (2007)
Origami Design Secrets: Mathematical Methods for an Ancient Art by Robert Lang.
Robert Lang也是折纸的一个辅助设计软件TreeMaker的作者。能够把爱好做成事业真的是非常仰慕了、


顺便推荐一个折纸的channel
https://www.youtube.com/channel/UC3ICcukYYeSn26KlCRnhOhA
大概长这样↓ 帅的不行
在这里插入图片描述

介绍

在这里插入图片描述
这三张图分别是折痕图,基形和最后的完成图。

研究领域

这一块和下一块区分开来,算是非传统意义上的折叠。
这个分类方式也是参考书Geometric Folding Algorithms: Linkages, Origami, Polyhedra的分类方式

1D 连接

机械连杆

在一个机械结构中如何获得一个完全直线方向的运动?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值