1. Scala Type和Catalyst Type的转换包括简单类型,比如String,Date, Number之间的转换;也包括集合类型,如Array、Map之间的转换。
2. Scala Type, CatalystType指的是什么
ScalaType指的是Scala和Java语言提供的数据类型,比如String, Date,Decimal,Array,Map等。
CatalystType指的是Catalyst框架提供的数据类型,用于SQL处理,它们都是DataType的子类,DataType本身继承自抽象类AbstractDataType,类的继承关系如下:
3. CatalystTypeConverter的代码:
CatalystTypeConverter定义了三个抽象方法toScala,toScalaImpl和toCatalystImpl
/**
* Converts a Scala type to its Catalyst equivalent (and vice versa).
*
* @tparam ScalaInputType The type of Scala values that can be converted to Catalyst.(Scala值的类型,是要转换到CatalystType类型吗?)
* @tparam ScalaOutputType The type of Scala values returned when converting Catalyst to Scala.(Catalyst类型转换成目标Scala类型)
* @tparam CatalystType The internal Catalyst type used to represent values of this Scala type.
*/
private abstract class CatalystTypeConverter[ScalaInputType, ScalaOutputType, CatalystType]
extends Serializable {
/**
* Converts a Scala type to its Catalyst equivalent while automatically handling nulls
* and Options.
* final函数,这个转换是不能被重写的。参数是scala类型的值,类型是Any,即表示传入该函数的参数值的类型不受约束?不是!实际上是ScalaInputType或者Option[ScalaInputType]
*/
final def toCatalyst(@Nullable maybeScalaValue: Any): CatalystType = {
if (maybeScalaValue == null) {
null.asInstanceOf[CatalystType]
} else if (maybeScalaValue.isInstanceOf[Option[ScalaInputType]]) { //如果maybeScalaValue是Option类型,Option中的元素类型是ScalaInputType
val opt = maybeScalaValue.asInstanceOf[Option[ScalaInputType]] //通过类型转换,得到opt是Option[ScalaInputType]类型的变量
if (opt.isDefined) { //如果opt是Some,而不是None
toCatalystImpl(opt.get) //通过Option的get方法,取出其值,然后传给toCatalystImpl方法处理,返回类型是CatalystType
} else {
null.asInstanceOf[CatalystType] //如果是None,则返回的值是null。即用CatalystType的null表示Scala类型的None
}
} else {
toCatalystImpl(maybeScalaValue.asInstanceOf[ScalaInputType]) //调用toCatalystIpml处理maybeScalaValue
}
}
/**
* Given a Catalyst row, convert the value at column `column` to its Scala equivalent.
* 将row的第column列的值转换成ScalaOutputType类型的值返回
* 这个方法同toCatalyst一样,也是final的,不过它的输入不是CatalystType类型的值,而是通过row+column二个维度确定的值
*/
final def toScala(row: InternalRow, column: Int): ScalaOutputType = {
//调用toScalaImpl进行处理
if (row.isNullAt(column)) null.asInstanceOf[ScalaOutputType] else toScalaImpl(row, column)
}
/**
* Convert a Catalyst value to its Scala equivalent.
* 这个方法的签名和toCatalyst完全一样,不过它是一个抽象方法,意味着不同的converter,需要提供个性化的转换实现,而不能由CatalystTypeConverter进行框架级别的统一实现
*/
def toScala(@Nullable catalystValue: CatalystType): ScalaOutputType
/**
* Converts a Scala value to its Catalyst equivalent.
* @param scalaValue the Scala value, guaranteed not to be null.
* @return the Catalyst value.
* 针对不为null的scalaValue进行转换
*/
protected def toCatalystImpl(scalaValue: ScalaInputType): CatalystType
/**
* Given a Catalyst row, convert the value at column `column` to its Scala equivalent.
* This method will only be called on non-null columns.
* 针对不为null的row+column二维确定的值,返回它对应的ScalaOutputType类型的值
*/
protected def toScalaImpl(row: InternalRow, column: Int): ScalaOutputType
}
private case class IdentityConverter(dataType: DataType)
extends CatalystTypeConverter[Any, Any, Any] {
override def toCatalystImpl(scalaValue: Any): Any = scalaValue
override def toScala(catalystValue: Any): Any = catalystValue
override def toScalaImpl(row: InternalRow, column: Int): Any = row.get(column, dataType)
}
private case class UDTConverter(
udt: UserDefinedType[_]) extends CatalystTypeConverter[Any, Any, Any] {
override def toCatalystImpl(scalaValue: Any): Any = udt.serialize(scalaValue)
override def toScala(catalystValue: Any): Any = udt.deserialize(catalystValue)
override def toScalaImpl(row: InternalRow, column: Int): Any =
toScala(row.get(column, udt.sqlType))
}
/** Converter for arrays, sequences, and Java iterables. */
private case class ArrayConverter(
elementType: DataType) extends CatalystTypeConverter[Any, Seq[Any], ArrayData] {
private[this] val elementConverter = getConverterForType(elementType)
override def toCatalystImpl(scalaValue: Any): ArrayData = {
scalaValue match {
case a: Array[_] =>
new GenericArrayData(a.map(elementConverter.toCatalyst))
case s: Seq[_] =>
new GenericArrayData(s.map(elementConverter.toCatalyst).toArray)
case i: JavaIterable[_] =>
val iter = i.iterator
val convertedIterable = scala.collection.mutable.ArrayBuffer.empty[Any]
while (iter.hasNext) {
val item = iter.next()
convertedIterable += elementConverter.toCatalyst(item)
}
new GenericArrayData(convertedIterable.toArray)
}
}
override def toScala(catalystValue: ArrayData): Seq[Any] = {
if (catalystValue == null) {
null
} else if (isPrimitive(elementType)) {
catalystValue.toArray[Any](elementType)
} else {
val result = new Array[Any](catalystValue.numElements())
catalystValue.foreach(elementType, (i, e) => {
result(i) = elementConverter.toScala(e)
})
result
}
}
override def toScalaImpl(row: InternalRow, column: Int): Seq[Any] =
toScala(row.getArray(column))
}
4. CatalystTypeConverter的具体实现之原子类型转换
4.1 源代码:
每个具体的converter实现都是object,因此可以作为单例进行方法调用。注意,Date类型不属于Primitive范畴
private abstract class PrimitiveConverter[T] extends CatalystTypeConverter[T, Any, Any] {
final override def toScala(catalystValue: Any): Any = catalystValue //为什么catalystValue可以直接作为scalaValue返回
final override def toCatalystImpl(scalaValue: T): Any = scalaValue //为什么scalaValue可以直接作为CatalystValue返回
}
private object BooleanConverter extends PrimitiveConverter[Boolean] {
override def toScalaImpl(row: InternalRow, column: Int): Boolean = row.getBoolean(column)
}
private object ByteConverter extends PrimitiveConverter[Byte] {
override def toScalaImpl(row: InternalRow, column: Int): Byte = row.getByte(column)
}
private object ShortConverter extends PrimitiveConverter[Short] {
override def toScalaImpl(row: InternalRow, column: Int): Short = row.getShort(column)
}
private object IntConverter extends PrimitiveConverter[Int] {
override def toScalaImpl(row: InternalRow, column: Int): Int = row.getInt(column)
}
private object LongConverter extends PrimitiveConverter[Long] {
override def toScalaImpl(row: InternalRow, column: Int): Long = row.getLong(column)
}
private object FloatConverter extends PrimitiveConverter[Float] {
override def toScalaImpl(row: InternalRow, column: Int): Float = row.getFloat(column)
}
private object DoubleConverter extends PrimitiveConverter[Double] {
override def toScalaImpl(row: InternalRow, column: Int): Double = row.getDouble(column)
}
4.2 以BooleanConverter为例,看下这些原子Converter如何使用,即如何给方法进行输入,如何得到方法的输出
5. DateConverter的实现
Scala的Date类型,对应于Catalyst的Int类型
/**
* Scala输入类型是Date
* Scala输出类型是Date
* Catalyst的类型是Any,实际上是Int
*
*/
private object DateConverter extends CatalystTypeConverter[Date, Date, Any] {
//Scala类型(Date)转换为Catalyst类型,是几个Int
override def toCatalystImpl(scalaValue: Date): Int = DateTimeUtils.fromJavaDate(scalaValue)
//Catalyst类型()实际上是Int,转换为Scala类型的Date
override def toScala(catalystValue: Any): Date =
if (catalystValue == null) null else DateTimeUtils.toJavaDate(catalystValue.asInstanceOf[Int])
//将row的指定列的值(Int类型)转换为Date类型的Scala值
override def toScalaImpl(row: InternalRow, column: Int): Date =
DateTimeUtils.toJavaDate(row.getInt(column))
}
问题:CatalystType的类型是Any,为什么在它的方法实现中使用Int了?猜测的原因是Int是Any的子类,具体是什么语法现象,现在不确定(Java也有类型的语法现象)。一个简单的例子:
abstract class X[T] {
def doIt(): T
}
class A1 extends X[Any] {
override def doIt(): Int = 10
}
Java版本:
abstract class X<T>{ //泛型
abstract T doIt();
}
public class A1 extends X<Object> {
@Override
Integer doIt() {
return null;
}
}
6. TimestampConverter
Scala的Timestamp类型与Catalyst的Long类型的转换
private object TimestampConverter extends CatalystTypeConverter[Timestamp, Timestamp, Any] {
override def toCatalystImpl(scalaValue: Timestamp): Long =
DateTimeUtils.fromJavaTimestamp(scalaValue)
override def toScala(catalystValue: Any): Timestamp =
if (catalystValue == null) null
else DateTimeUtils.toJavaTimestamp(catalystValue.asInstanceOf[Long])
override def toScalaImpl(row: InternalRow, column: Int): Timestamp =
DateTimeUtils.toJavaTimestamp(row.getLong(column))
}
7. DecimalConverter
Scala的BigDecimal、JavaBigDecimal、Decimal与Catalyst的Decimal之间转换。通过Decimal转换得到的Scala的类型归一为JavaBigDecimal,它的实际类型是Java语言中定义BigDecimal
private class DecimalConverter(dataType: DecimalType)
extends CatalystTypeConverter[Any, JavaBigDecimal, Decimal] {
override def toCatalystImpl(scalaValue: Any): Decimal = {
val decimal = scalaValue match {
case d: BigDecimal => Decimal(d)
case d: JavaBigDecimal => Decimal(d)
case d: Decimal => d
}
if (decimal.changePrecision(dataType.precision, dataType.scale)) {
decimal
} else {
null
}
}
override def toScala(catalystValue: Decimal): JavaBigDecimal = catalystValue.toJavaBigDecimal
override def toScalaImpl(row: InternalRow, column: Int): JavaBigDecimal =
row.getDecimal(column, dataType.precision, dataType.scale).toJavaBigDecimal
}
DecimalConverter有一个构造参数dataType,它的类型是DecimalType,DecimalType是一个case class,它有两方面的信息,case class DecimalType(precision: Int, scale: Int)
8. ArrayConverter
Scala的输入类型任意,
Scala的输出类型是Seq[Any]
Catalyst的类型是ArrayData,它是一个抽象类,有两个具体的类型,GenericArrayData和UnsafeArrayData
/** Converter for arrays, sequences, and Java iterables. */
//参数elementType用于指定数据元素的类型
private case class ArrayConverter(
elementType: DataType) extends CatalystTypeConverter[Any, Seq[Any], ArrayData] {
//根据elementType,获得相应的elementConverter,就是我们前面定义的这些Converter,比如对于BooleanType,得到BooleanConverter
private[this] val elementConverter = getConverterForType(elementType)
override def toCatalystImpl(scalaValue: Any): ArrayData = {
scalaValue match {
case a: Array[_] =>
new GenericArrayData(a.map(elementConverter.toCatalyst)) //将数组a中的元素依次交给elementConverter.toCatalyst进行处理
case s: Seq[_] =>
new GenericArrayData(s.map(elementConverter.toCatalyst).toArray)
case i: JavaIterable[_] =>
val iter = i.iterator
val convertedIterable = scala.collection.mutable.ArrayBuffer.empty[Any]
while (iter.hasNext) {
val item = iter.next()
convertedIterable += elementConverter.toCatalyst(item)
}
new GenericArrayData(convertedIterable.toArray)
}
}
//将ArrayData转换成Seq类型
override def toScala(catalystValue: ArrayData): Seq[Any] = {
if (catalystValue == null) {
null
} else if (isPrimitive(elementType)) { //如果elementType是原子类型,处理逻辑见下面的分析
catalystValue.toArray[Any](elementType)
} else {
val result = new Array[Any](catalystValue.numElements())
catalystValue.foreach(elementType, (i, e) => {
result(i) = elementConverter.toScala(e)
})
result
}
}
//row+column对应的数据是数组
override def toScalaImpl(row: InternalRow, column: Int): Seq[Any] =
toScala(row.getArray(column))
}
如果elementType是原子类型,则调用catalystValue.toArray[Any](elementType)进行处理
def toArray[T: ClassTag](elementType: DataType): Array[T] = {
val size = numElements()
val values = new Array[T](size)
var i = 0
while (i < size) {
if (isNullAt(i)) {
values(i) = null.asInstanceOf[T]
} else {
values(i) = get(i, elementType).asInstanceOf[T]
}
i += 1
}
values
}