引言
每当我们接触一个新技术领域时,往往需要借助大量的文献调研,来梳理研究现状。
尤其是在人工智能、计算机等领域,技术发展日新月异,新方法层出不穷。有时候自己闷头看了一大堆文献,依旧感觉思路不清晰。
这时,connected papers可以帮你快速搞清楚,感兴趣的研究领域都有哪些关联文章、此前有哪些重要工作、并对最新研究工作进行追踪。
神器1:connected papers
这是一款检索相似、关联论文的工具,用知识图谱的方式,将关联文献的脉络呈现出来。
https://www.connectedpapers.com/
输入一篇论文的标题,connected papers会为你构建一个该领域类似论文的图谱。你可以从图谱中发现你感兴趣领域的趋势,对领域内文献引用动态有一个真实的、可视化的理解,并对最新发表的重要论文工作及时进行跟进。
关联文献图谱
在搜索框输入你感兴趣的文章标题,可以看到下图所示的图谱:
- 在关联论文图谱中,每个节点是一篇与初始论文相关的学术论文,论文按照相似度排列。
- 点击每一篇文献或节点,右侧会显示这篇文献的摘要信息,还可以在semantic scholar引擎中查看其他具体信息。这个神器在后文中会具体介绍。
- 节点大小是被引次数。节点颜色表示发表年份的远近。
过往工作
Prior Works可以查看这篇论文之前的过往工作。
用表格形式列出关联图谱中最常被引用的论文,它们通常是该领域重要的开创性工作。
衍生工作
Derivative Works可以查看这篇论文的衍生工作。
衍生工作主要是那些引用了关联文献图谱中的许多论文的文献。这通常意味着它们可能是该领域的综述文章,或者是受图谱中许多论文启发的近期相关著作。
神器2:semantic scholar
这是一个基于机器学习的文献检索引擎,增加了对文献的语义内容理解。
https://www.semanticscholar.org/
输入你想找的文章或者关键词,就可以进行文献检索。
文献检索常用的功能基本都有,这里主要介绍一下semantic scholar特色的功能。
文献检索
首先,搜索“image caption”这个领域的文献,先按引用数排序,查找这个领域引用量最高的一些文献:
可以在"
引号上悬停,查看这篇文献近年来的引用情况。
点开一个文献,这篇文献的相关信息如下图所示,semantic scholar会在文章摘要中自动高亮文章的核心方法(key method):
被引情况
semantic scholar会将该文献的被引,按不同类别进行呈现:
Highly Influential Citations
是基于AI技术自动判断出的高影响力被引。- Background citations 是在其他文献的背景介绍中引用。
- Methods citations 是在其他文献的方法中引用。
- Results citations 是在其他文献的结果中引用。
Semantic Reader阅读器
在文献下方点击View With Semantic Reader
按钮,可以用自带的语义阅读器来阅读这篇文献,比传统阅读器更高效、更智能。
Semantic阅读器是基于来自AI2、UC伯克利和华盛顿大学的语义学者团队的研究。
当前支持的功能包括:
- 单击引文:可以直接查看该引文的摘要
- 单击数学符号:可以查看其在整个文献中的用法
查看引文的功能在阅读Related Work时尤其实用,无需下载对应的参考文献,在Semantic阅读器里可以直接查看参考文献的摘要和关键信息。
通过这几个功能,Semantic阅读器可以提高你的阅读效率,帮你快速查看关键内容。
小结
-
connected papers 可以帮你快速查找本领域的关联文献,梳理文献的发展脉络。
-
Semantic Scholar 可以帮你找到合适的论文,并帮助你快速阅读到最重要的内容。
-
这两个文献工具配合使用,可以大大提高你的文献调研效率。
如果本文对你有帮助的话,欢迎一键三连~