这篇论文的标题是《On-device Real-time Custom Hand Gesture Recognition》,主要研究了如何在移动设备上实时识别自定义手势。以下是论文的主要内容概述:
摘要:
- 论文指出现有的手势识别系统大多限于预定义的手势集,但用户和开发者通常希望识别新的、未见过的手势。
- 提出了一个用户友好的框架,允许用户轻松定制和部署自己的手势识别流程。
- 框架提供了一个预训练的单手嵌入模型,可以针对自定义手势识别进行微调。
- 用户可以在网络摄像头前进行手势,收集每个手势的少量图像。
- 提供了一个低代码解决方案来训练和部署自定义手势识别模型,使得即使没有机器学习(ML)专业知识的用户也能使用框架。
- 还提供了一个无代码的Web前端,供没有任何ML专业知识的用户使用。
- 自定义手势识别(HGR)可以在设备上实时运行,通过调用开源模型推理API MediaPipe Tasks中的简单函数实现。
1. 引言:
- 手势识别在增强现实(AR)、虚拟现实(VR)、视频会议和远程控制应用中起着关键作用。
- 论文提出了一种创新的方法,即使用预训练模型和有限的训练数据来训练准确且健壮的HGR模型。
- 预训练模型是在大量手语视频数据集上训练的,然后对权重进行微调以用于自定义手势分类。
2. 架构:
- 使用了“On-device Real-Time Hand Gesture Recognition”中的工作作为起点。
- 解决方案使用了一个实时运行的模型,该模型提取手部地标。
- 为了训练词级手指拼写模型,使用了内部收集的数据集,包含79K个视频和21K个独特的手指拼写单词。
- 通过使用双向LSTM和连接时序分类(CTC)损失来训练模型,能够提取区分性特征。
3. 结果:
- 通过微调单手嵌入模型的权重来训练自定义手势识别模型,并报告了结果。
- 使用了8个类别的内部数据集,包括7个手势类别和1个背景类别。
- 进行了不同训练样本数量的试验,发现当样本数量为50或更多时,模型表现良好。
4. 手部地标检测改进:
- 当两只手非常接近或相互遮挡时,地标模型可能无法准确提取两只手的所有地标。
- 通过在训练和推理期间提供手部地标模型的手性提示,可以提高地标的准确性。
5. 实现:
- 开发了低代码训练管道MediaPipe Model Maker,使用户能够轻松训练新的手势识别模型。
- 实现了模块化的推理管道,该管道以原始手部图像序列为输入,并顺序处理所有图像。
6. 结论:
- 研究提出了一种易于使用的方法,通过微调预训练的手势地标嵌入来训练准确的自定义手势识别模型。
- 还介绍了对手势地标模型的改进,这些改进增强了手势识别系统的有效性。
参考文献:
- 论文列出了相关的参考文献,包括关于实时手势识别、手部跟踪、LSTM、CTC损失、深度迁移学习、批量归一化等的研究。
论文的重点在于提出了一种新的框架,使得用户可以自定义手势识别流程,并且通过预训练模型和少量的训练数据来实现高准确率的手势识别,这对于AR、VR等领域具有重要的应用价值。