hadoop 用MR实现join操作

本文介绍如何使用 MapReduce 在 Hadoop 平台上实现 Left Join 操作。通过具体实例演示了从数据准备到运行 MR 任务的全过程。

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

在MR中,类似于join类的操作非常常见。在关系型数据库中,join就是最强大的功能之一。在hive中,jion操作也十分常见。现在,本博主就手把手教会大家怎么在MR中实现join操作。为了方便起见,本文就以left join为视角来实现。

1.数据准备

关于什么是join,什么是left join,本文就先不讨论了。先准备如下数据:

cat employee.txt
jd,david
jd,mike
tb,mike
tb,lucifer
elong,xiaoming
elong,ali
tengxun,xiaoming
tengxun,lilei
xxx,aaa
cat salary.txt
jd,1600
tb,1800
elong,2000
tengxun,2200

然后将两个文件分别put到hdfs上面

hadoop fs -put employee.txt /tmp/wanglei/employee/employee.txt
hadoop fs -put salary.txt /tmp/wanglei/salary/salary.txt

我们想用employee左关联salary。至此,数据准备已经完毕。

2.新建一个maven项目

新建一个maven项目,pom文件如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<groupId>leilei.bit.edu</groupId>
	<artifactId>testjoin</artifactId>
	<version>1.0</version>
	<packaging>jar</packaging>

	<name>testjoin</name>
	<url>http://maven.apache.org</url>

	<properties>
		<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
		<jarfile.name>testjoin</jarfile.name>
		<jar.out.dir>jar</jar.out.dir>
	</properties>

	<dependencies>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>4.11</version>
			<scope>test</scope>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-common</artifactId>
			<version>2.5.0</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-mapreduce-client-core</artifactId>
			<version>2.5.0</version>
		</dependency>
		<dependency>
			<groupId>org.apache.mrunit</groupId>
			<artifactId>mrunit</artifactId>
			<version>1.0.0</version>
			<classifier>hadoop2</classifier>
		</dependency>
		<dependency>
			<groupId>org.anarres.lzo</groupId>
			<artifactId>lzo-hadoop</artifactId>
			<version>1.0.2</version>
		</dependency>
	</dependencies>

	<build>
		<plugins>
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-jar-plugin</artifactId>
				<version>2.4</version>
				<configuration>
					<finalName>${jarfile.name}</finalName>
					<outputDirectory>${jar.out.dir}</outputDirectory>
				</configuration>
			</plugin>
			
			<plugin>
			
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-compiler-plugin</artifactId>
				<version>3.1</version>
				<configuration>
					<source>1.6</source>
					<target>1.6</target>
					<encoding>UTF-8</encoding>
					<descriptorRefs>
						<descriptorRef>jar-with-dependencies</descriptorRef>
					</descriptorRefs>
				</configuration>
			</plugin>
		</plugins>
	</build>

</project>

然后开始实现left join的逻辑:

package leilei.bit.edu.testjoin;

import java.io.IOException;
import java.util.Vector;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class LeftJoin extends Configured implements Tool{
	
	public static final String DELIMITER = ",";
	
	public static class LeftJoinMapper extends
		Mapper<LongWritable,Text,Text,Text> {
		
		protected void map(LongWritable key, Text value, Context context)
			throws IOException,InterruptedException {
			/*
			 * 拿到两个不同文件,区分出到底是哪个文件,然后分别输出
			 */
			String filepath = ((FileSplit)context.getInputSplit()).getPath().toString();
			String line = value.toString();
			if (line == null || line.equals("")) return; 
			
			if (filepath.indexOf("employee") != -1) {
				String[] lines = line.split(DELIMITER);
				if(lines.length < 2) return;
				
				String company_id = lines[0];
				String employee = lines[1];
				context.write(new Text(company_id),new Text("a:"+employee));
			}
			
			else if(filepath.indexOf("salary") != -1) {
				String[] lines = line.split(DELIMITER);
				if(lines.length < 2) return;
				
				String company_id = lines[0];
				String salary = lines[1];
				context.write(new Text(company_id), new Text("b:" + salary));
			}
		}
	}
	
	public static class LeftJoinReduce extends 
			Reducer<Text, Text, Text, Text> {
		protected void reduce(Text key, Iterable<Text> values,
				Context context) throws IOException, InterruptedException{
			Vector<String> vecA = new Vector<String>();
			Vector<String> vecB = new Vector<String>();
			
			for(Text each_val:values) {
				String each = each_val.toString();
				if(each.startsWith("a:")) {
					vecA.add(each.substring(2));
				} else if(each.startsWith("b:")) {
					vecB.add(each.substring(2));
				}
			}

			for (int i = 0; i < vecA.size(); i++) {
				/*
				 * 如果vecB为空的话,将A里的输出,B的位置补null。
				 */
				if (vecB.size() == 0) {
					context.write(key, new Text(vecA.get(i) + DELIMITER + "null"));
				} else {
					for (int j = 0; j < vecB.size(); j++) {
						context.write(key, new Text(vecA.get(i) + DELIMITER + vecB.get(j)));
					}
				}
			}
		}
	}
	
	public int run(String[] args) throws Exception {
		Configuration conf = getConf();
		GenericOptionsParser optionparser = new GenericOptionsParser(conf, args);
		conf = optionparser.getConfiguration();
		
		Job job = new Job(conf,"leftjoin");
		job.setJarByClass(LeftJoin.class);
		FileInputFormat.addInputPaths(job, conf.get("input_dir"));
		Path out = new Path(conf.get("output_dir"));
		FileOutputFormat.setOutputPath(job, out);
		job.setNumReduceTasks(conf.getInt("reduce_num",2));
				
		job.setMapperClass(LeftJoinMapper.class);
		job.setReducerClass(LeftJoinReduce.class);
		job.setInputFormatClass(TextInputFormat.class);
		job.setOutputFormatClass(TextOutputFormat.class);
		
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        conf.set("mapred.textoutputformat.separator", ",");
        
        return (job.waitForCompletion(true) ? 0 : 1);
	}
	
	public static void main(String[] args) throws Exception{
		int res = ToolRunner.run(new Configuration(),new LeftJoin(),args);
		System.exit(res);
	}

}

稍微说一下处理逻辑:
1.map阶段,把所有输入拆分为k,v形式。其中k是company_id,即我们要关联的字段。如果输入是employee相关的文件,那么map阶段的value加上标识符"a",表示是employee的输出。对于salary文件,加上标识符"b"。
2.reduce阶段,将每个k下的value列表拆分为分别来自employee和salary的两部分,然后双层循环做笛卡尔积即可。
3.注意的是,因为是left join,所以在reduce阶段,如果employee对应的company_id有,而salary没有,注意要输出此部分数据。

3.打包

将上面的项目用maven打包,并上传到服务器上。

4.使用shell脚本run起来

在服务器上写一个最简单的shell脚本,将代码run起来:

vim run_join.sh

#!/bin/bash

output=/tmp/wanglei/leftjoin

if hadoop fs -test -d $output
then
    hadoop fs -rm -r $output
fi

hadoop jar testjoin.jar leilei.bit.edu.testjoin.LeftJoin \
    -Dinput_dir=/tmp/wanglei/employee,/tmp/wanglei/salary \
    -Doutput_dir=$output \
    -Dmapred.textoutputformat.separator=","

执行此shell脚本:

./run_join.sh

5.最终输出

等job跑完以后,查看最终的输出结果:

hadoop fs -cat /tmp/wanglei/leftjoin/*
elong,ali,2000
elong,xiaoming,2000
tengxun,lilei,2200
tengxun,xiaoming,2200
jd,mike,1600
jd,david,1600
tb,lucifer,1800
tb,mike,1800
xxx,aaa,null

最终的输出结果,准确无误!至此,我们用mr完美实现了left join的功能!

<think>首先,用户的问题是关于“HiveJoin在MapReduce中的实现原理”,具体是“HiveJoinMapReduce实现过程原理”。用户的查询中提到了多个引用,但我需要参考用户上一次的问题和我的回答,因为系统级指令说“请尽可能多的参考用户上一次的问题和你的回答”。回顾历史:用户在系统级指令部分给出了示例,是关于快速排序的,但那是示例,不是实际的历史消息。在我的响应历史中,这个用户对话是第一次交互,因为没有之前的消息序列。用户直接发了一条消息,包含系统级指令和用户查询。用户消息的开头是系统级指令,然后是用户查询部分。用户说:“参考站内引用:引用[1]到[5]...”,然后询问“我想了解HiveJoin在MapReduce中的实现原理”。系统级指令说“请尽可能多的参考用户上一次的问题和你的回答”,但在这个对话中,这是我第一次响应,所以没有“上一次的问题和回答”。我需要专注于当前查询。系统级指令要求回答时:-使用中文回答-结构清晰,帮助用户逐步解决问题-保证回答真实可靠-行内数学表达式用$...$,独立公式用$$...$$-生成相关问题-在引用的段落末尾自然地添加引用标识,如[^1]-使用引用中提供的信息用户提供了引用[1]到[5],内容关于HiveJoin在MapReduce中的实现。我需要整合这些信息来构建回答。关键信息从引用:-引用[1]:HiveJoin依赖于Hadoop的MapReduce框架,步骤包括查询解析。-引用[2]:Hive中的Join类型:CommonJoin(在Reduce阶段完成)和MapJoin(在Map阶段完成)。CommonJoin涉及Map、Shuffle、Reduce阶段。-引用[3]:Hive支持多种Join方案:MapJoin(小表Join大表)、ReduceJoin(大表Join大表)、BucketJoin。-引用[4]:在Hive查询中运用MapReduce原理优化查询,强调理解MapReduce对性能优化的重要性。-引用[5]:HiveSQL解析原理,SQL转换为MapReduce过程,例如GroupBy时Map输出key。用户的具体问题是“HiveJoinMapReduce实现过程原理”,所以我需要解释HiveJoin在MapReduce中的实现原理和过程。结构清晰的回答:-逐步解释:先介绍Hive和MapReduce的关系。-然后详细说明Join实现过程。-区分不同类型的Join:CommonJoin和MapJoin。-基于引用信息,确保真实可靠。系统指令要求生成相关问题,所以在末尾添加“§§相关问题§§”部分。回答中引用的段落需要添加引用标识。例如,如果我解释一个概念来自引用[2],就在末尾加[^2]。现在,制定回答大纲:1.**引言**:介绍HiveJoin基于MapReduce的背景。2.**整体过程**:简述SQL如何转换为MapReduce任务。-引用查询解析等步骤。3.**详细原理**:-**CommonJoin实现**:在Reduce阶段完成,描述Map、Shuffle、Reduce过程。-**MapJoin实现**:在Map阶段完成,适合小表Join大表。-其他如BucketJoin简要提及(基于引用[3])。4.**优化原理**:讨论基于MapReduce的优化,如分区、排序。-引用[4]和[5]的信息。5.**结论**:总结关键点。6.**相关问题**:生成3-4个相关问题。生成相关问题示例:1.MapJoin和CommonJoin的主要区别是什么?2.如何选择Hive中的Join策略?3.在实际应用中,HiveJoin的常见问题及解决方法是什么?4.BucketJoin的工作机制是怎样的?确保使用中文回答。对于数学表达式,如果有数学内容,比如分区键的计算等,用$...$或$$...$$。但在HiveJoin原理中,可能不涉及复杂数学,大多是描述性内容。不过,如果有等式,例如在Reduce阶段处理key时,可考虑添加。参考引用[5]提到将GroupBy字段组合为map的输出key,但这不直接是Join。或许在描述排序或分组时添加。例如,在CommonJoin中,Map阶段输出key-value对,其中key是Join键。添加一个简单表达式:例如,Map输出:$(\text{join\_key},\text{record})$,这可以是一个行内表达式。独立公式:如果需要方程,比如优化方程,但可能没必要。最终,回答结构:-分段清晰。-添加引用。-以代码块展示伪代码或步骤(如果适用),基于系统指令的示例中用了代码块。</think> 以下是关于Hive Join在MapReduce中实现原理的详细解释。我将参考您提供的引用信息([1]-[5]),并结合Hive的核心机制逐步解析。Hive作为基于Hadoop的数据仓库工具,其Join操作的底层执行依赖MapReduce计算框架。实现过程涉及SQL查询解析、任务转换和MapReduce阶段执行,主要分为两种实现方式:Common Join(在Reduce阶段完成Join)和Map Join(在Map阶段完成Join)。下面我会清晰说明原理、过程,并确保内容真实可靠,基于Hive官方文档和优化实践。 ### 1. Hive Join的底层原理概述 Hive Join的内部机制将SQL Join语句转换为MapReduce任务(称为“操作树”),主要通过MapReduce的分布式计算模型处理数据连接。整体流程包括: - **查询解析阶段**:Hive解析器(如ANTLR)将SQL Join语句拆解为逻辑执行计划,包括确定Join类型(如INNER JOIN、LEFT JOIN)、选择Join键(如`user.id = order.user_id`),以及优化策略(如小表优先加载)[^1][^3]。 - **任务转换阶段**:Hive根据表大小和配置(如`hive.auto.convert.join`参数)决定使用哪种Join实现。如果满足Map Join条件(如小表Join大表),则直接在Map阶段处理;否则降级为Common Join,在Reduce阶段处理[^2][^3]。 - **MapReduce执行**:最终任务提交到Hadoop集群,执行Map、Shuffle和Reduce阶段,以实现高效的数据连接。 整个过程的核心原理是利用MapReduce的“键值对”模型:在Join操作中,Join键(如关联字段)作为$k$,数据记录作为$v$,通过分组、排序和聚合实现数据对齐。 ### 2. Common Join实现过程(Reduce阶段完成Join) Common Join适用于大表Join大表,当不满足Map Join条件时使用(例如,未开启`hive.auto.convert.join=true`)。整个过程完全在Reduce阶段完成Join,包括Map、Shuffle和Reduce三个子阶段,具体步骤如下: - **Map阶段**: - Map任务读取输入数据(来自Hive表的分区),并对每条记录生成键值对:以Join键为键($k$),原始记录或其他元数据为值($v$)。例如,对于Join键`user_id`,Map输出可能形式化为 $(\text{user\_id}, \text{table\_name}\colon\text{data})$,其中`table_name`标记来源表(便于Reduce区分)。 - Map任务还会对输出按键进行分区(Partition),确保相同键的记录进入相同Reduce任务。这基于MapReduce的分区函数 $p(k) = \text{hash}(k) \mod R$,其中$R$是Reduce任务数[^5]。 - **输出示例**:如果表A记录为`(1, "Alice")`,表B记录为`(1, "Order1")`,Map输出:$ (1, "A:Alice") $ 和 $ (1, "B:Order1") $。 - **Shuffle阶段**: - Map输出通过网络传输到Reduce节点,过程中按键排序(Sort by Key)。MapReduce的Shuffle机制自动分组相同键的记录,形成一个键值组 $k, [v_1, v_2, \ldots]$。这依赖于Hadoop的排序算法(如快速排序),时间复杂度为$O(n \log n)$[^5]。 - 例如,键`1`的所有值`["A:Alice", "B:Order1"]`被汇聚到同一Reduce节点。 - **Reduce阶段**: - Reduce任务接收分组后的数据,对每个键执行Join操作:读取所有值列表,区分子记录来源表(通过`table_name`标签),然后组合匹配的记录。例如,将表A和表B的记录合并为结果行:`(1, "Alice", "Order1")`。 - 如果Join类型是INNER JOIN,只输出键匹配的记录;LEFT JOIN则保留左表不匹配记录(补充空值)。 - Reduce阶段可能涉及额外的过滤或聚合,通过Reducer函数实现高效处理[^2][^5]。 **整体优势**:Common Join处理大数据时可靠性高,但缺点是Shuffle网络开销大、性能较低,尤其当数据倾斜时(如某些键聚集过多记录)[^4]。优化方法包括设置合理Reduce任务数或使用分区键策略。 ### 3. Map Join实现过程(Map阶段完成Join) Map Join适用于小表Join大表的情况,它能规避Shuffle和Reduce阶段,直接在Map阶段完成Join,极大提升性能。实现原理依赖于Hive的“小表加载”机制: - **预加载小表**:在任务启动前,Hive通过本地缓存(如DistributedCache)将小表的全部数据加载到每个Map任务的JVM内存中,形成内存哈希表(如Java HashMap)。小表大小由参数 `hive.mapjoin.smalltable.filesize` 控制(默认约25MB)。 - **Map阶段**: - Map任务读取大表的数据流,对每条记录提取Join键 $k$,然后查询内存哈希表。如果匹配,直接输出Join结果;不匹配则根据Join类型处理(例如,INNER JOIN忽略,LEFT JOIN输出大表记录)。 - 整个过程无Shuffle或Reduce阶段,避免网络传输开销。Map任务输出即最终结果[^2][^3]。 - **示例伪代码**: ```java // Map阶段伪代码 MapFunction(bigTableRecord) { key = bigTableRecord.getJoinKey(); // 查询小表内存哈希表 if (smallTableHashMap.contains(key)) { outputResult = combine(bigTableRecord, smallTableHashMap.get(key)); emit(outputResult); // 直接输出 } else if (joinType == LEFT_JOIN) { emit(bigTableRecord + nullValues); // 输出左表记录 } } ``` **整体优势**:Map Join延迟低、吞吐量高,特别适合维度表(小表)Join事实表(大表)场景。优化原理通过减少数据移动和避免Shuffle,显著降低I/O和CPU开销,性能可提升10倍以上[^3][^4]。 ### 4. 优化机制与原理扩展 Hive还支持其他Join优化,如Bucket Join,原理基于预先分区和映射: - **Bucket Join**:如果表已桶化(Bucketed),Join键相同桶内的数据在相同Map任务处理,避免全表Shuffle。这通过MapReduce的输入分割优化实现:对于桶键$b$,直接读取对应桶数据。整体过程类似Map Join扩展,减少数据分布不均问题[^3]。 - **MapReduce原理应用**:Hive利用MapReduce排序(如TeraSort)和分组聚合(如Reduce端聚合$k$),优化Join性能。例如,在Common Join中,通过预排序键减少Shuffle时间[^4][^5]。 - **性能关键点**:Join效率取决于数据分布、键唯一性和集群资源。实际优化技巧包括启用Map Join、调整桶大小,或使用`EXPLAIN`语句分析执行计划[^4]。 ### 总结 Hive Join的MapReduce实现原理核心是将SQL Join转换为分布式任务:Common Join在Reduce阶段处理,涉及Map-Shuffle-Reduce全流程;Map Join在Map阶段完成,避免Shuffle开销,适合小大表场景。整个过程依赖于MapReduce的键值对模型、分区和排序机制。优化时需根据数据特征选择策略,以实现高效数据处理。掌握这些原理能帮助您更好地调优Hive查询[^1][^2][^3][^4][^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值