项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步
1.普通正态分布转换标准正态分布公式
我们知道正态分布是由两个参数
μ
\mu
μ与
σ
\sigma
σ确定的。对于任意一个服从
N
(
μ
,
σ
2
)
N(\mu, \sigma^2)
N(μ,σ2)分布的随机变量
X
X
X,经过下面的变换以后都可以转化为
μ
=
0
,
σ
=
1
\mu=0, \sigma=1
μ=0,σ=1的标准正态分布(standard normal distribution)。转换公式为:
z
=
X
−
μ
σ
z = \frac{X-\mu}{\sigma}
z=σX−μ
2.证明
概率统计的教科书上一般直接给出这个结论,并没有给出相应的证明。下面我们来看看这个结论的推理过程。由于犯懒懒得编辑公式,直接贴截图,证明过程来自参考文献1。
3.几个应用的例子
3.1 假设公共汽车门的高度按成年男性碰头机会小于1%来设计。又假设成年男性的身高服从正态分布 X ∼ N ( 170 , 6 2 ) X \sim N(170, 6^2) X∼N(170,62),求问车门的高度 h h h为多少?
假设身高这一随机变量为
X
X
X,那么要求的问题为:
P
(
x
>
h
)
=
0.01
P(x > h) = 0.01
P(x>h)=0.01
即
1
−
P
(
x
≤
h
)
=
0.01
1 - P(x \le h) = 0.01
1−P(x≤h)=0.01
P
(
x
≤
h
)
=
0.99
P(x \le h) = 0.99
P(x≤h)=0.99
因为
X
∼
N
(
170
,
6
2
)
X \sim N(170, 6^2)
X∼N(170,62), 所以
h
−
170
6
∼
N
(
0
,
1
)
\frac{h - 170}{6} \sim N(0, 1)
6h−170∼N(0,1)。
通过查标准正态分布表可知,
P
(
z
≤
2.33
)
=
0.99
P(z \le 2.33) = 0.99
P(z≤2.33)=0.99
因此h = 170 + 6 * 2.33 = 183.98cm
3.2 现在有一个
μ
=
10
\mu = 10
μ=10和
σ
=
2
\sigma = 2
σ=2的正态随机变量,求x在10与14之间的概率是多少?
当x=10时,z = 0。当x=14时,z = (14-10)/2 = 2。于是,x在10与14之间的概率等价于标准正态分布中0与2之间的概率。
P
(
0
≤
z
≤
2
)
=
P
(
z
≤
2
)
−
P
(
z
≤
0
)
=
0.4772
P(0 \le z \le 2) = P(z \le 2) - P(z \le 0) = 0.4772
P(0≤z≤2)=P(z≤2)−P(z≤0)=0.4772
参考文献:
1.https://www.zhihu.com/question/30121927