1. 误差推导
在无线电TOF测距原理(1) - 你眼中的TOF与真实的TOF-CSDN博客已得知单边TOF测距流程以及模型如下:
理论距离计算公式:,我们仅从定性分析了单边测距的误差,还不够精准,接下来从定量角度详细分析误差。
要详细的分析误差首先需要根据实际情况建立误差模型,根据距离计算公式只要测得Ra和Db就可得到距离d,但由于设备A/B的时钟偏移,其实我们测量得到不是Ra和Db而是和,这两者在极端时间内存在以下关系(都与理论实践存在固定偏差):
根据误差模型,然后实际测量得到距离如下:
测量误差:
化简后误差为:
此时误差包含了两个测量变量,需要按二维分析误差,对误差分析并不友好,另外考虑到与存在一定线性关系:
将其带入误差分析并化简:
2. 误差结果分析
在上面的总误差中由两部分组成,第一项是,这部分误差与实际的距离与设备A时钟误差的绝对值相关,这部分对总的误差贡献极小,如真实距离为100米,时钟误差为20ppm(无线通信基本要求),那么这部分误差仅为100*20ppm约为0.2厘米,几乎可以忽略不计;
另外主要贡献的误差的第二项为,这部分对误差的贡献起了绝对性的作用,当为零即设备A和设备B的时钟误差相等,这时候第二项并不向总误差贡献任何误差,总误差由第一项决定,由于第一项误差对实际测量几乎不产生影响,工程上可近似认为此时误差为零。当不为零即设备A和设备B的时钟误差不相等,这时总的误差与两个设备的时钟相对误差正相关,而且相关系数极大为光速乘以处理时间,如在实际工程中一般为2ms,此时相关系数约为3*10^8 * 2ms=6*10^5,对于相对误差为20ppm的时钟精度,此时测量误差最大为12米,而第一项最大误差仅为0.2厘米几乎可以忽略,仍然可认为总误差由第二项贡献。
3. 总结
通过对两个设备的时钟误差建模,对单边测距的误差进行了深入的分析,总体上来说单边TOF的测量主要误差是由设备之间的相对误差影响,设备的绝对时钟偏差并不会对单边TOF结果产生较大的误差。