浅谈一下误差

论文中所用误差类别整理

转载参考文章如下:

转载:https://blog.csdn.net/bluishglc/article/details/120723942
https://blog.csdn.net/FrankieHello/article/details/82024526/

主要包括方差、标准差、均方误差、均方根误差、相对误差、绝对误差。

①相对误差与绝对误差

绝对误差是测量值与真实值之差的绝对值,即绝对误差=|测量值-真实值|;
相对误差是绝对误差所占真实值的百分比,即相对误差=|测量值-真实值|/真实值

绝对误差是既指明误差的大小,又指明其正负方向,以同一单位量纲反映测量结果偏离真值大小的值,它确切地表示了偏离真值的实际大小。

相对误差相当于测量的绝对误差占真值(或给出值)的百分比或用数量级表示,它是一个无量纲的值。一般来说,相对误差更能反映测量的可信程度。

②方差(Variance)

方差用于衡量随机变量或一组数据的离散程度。对于方差我们可以用一种朴素的方式理解和记忆:它不是平方的差,而是差的平方求和之后再取平均值,对于计算方差取差的平方这一点,可以很形象地理解为以两点间的直线距离为边得到一个正方型,以面积(平方)的形式度量离散程度,显然面积越大,意味着离散程度越高。

方差分为总体方差和样本方差,在于分母的不同,效果也有所区别

总体方差

总体方差,也叫做有偏估计,其实就是普遍在使用的标准“方差”的概念。计算总体方差需要先计算出总体均值,总体均值的计算方式是:
在这里插入图片描述

其中,n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值。然后,基于总体均值,可得总体方差:
在这里插入图片描述

样本方差

但是在实际情况中,总体均值可能无法得到(样本过多或无法穷举),此时往往会通过抽样来获得一个近似值,这个值叫样本方差。

样本方差:
在这里插入图片描述
至于样本方差中的分母为什么是n-1,可以这样理解:因为样本方差是用来估计总体中个体之间的变化大小,只拿到一个个体,当然完全看不出变化大小。反之,如果公式的分母不是n-1而是n,计算出的方差就是0——这是不合理的,因为不能只看到一个个体就断定总体的个体之间变化大小为0。

③均方差 / 标准差

均方差又常称标准差,是方差的算术平方根,用σ表示。均方差反映的也是一组数据的离散程度。其实方差与标准差反映的都是数据集的离散程度,只是由于方差出现了平方项,导致量纲与原始数据量纲不一致,无法直观反映出偏离程度,所以才有了标准差。

正因为均方差是方差的平方根,所以对应于总体方差和样本方差,就总体均方差(总体标准差)和样本均方差(样本标准差),它们的计算公式分别是:

总体标准差
在这里插入图片描述

样本标准差:
在这里插入图片描述

④均方误差(mean-square error, MSE)

均方误差MSE通过计算预测值和实际值之间距离(即误差)的平方来衡量模型优劣。即预测值和真实值越接近,两者的均方差就越小。MSE的值越小,说明预测模型描述实验数据具有更好的精确度。均方误差损失又称为二次损失、L2损失,常用于回归预测任务中。
如下是均方误差的计算方法:
在这里插入图片描述
基于上述表述,均方误差也会这样表述:
在这里插入图片描述

其中observed(t)就是针对数据t的实际输出值(观测到的值),predicted(t)就是对应的预测值。

其实从均方误差MSE的计算公式可以看出,它和方差是高度一致的,只是参与计算的变量(项)不同,所以度量的角度也就不同,方差是用来衡量一组数自身的离散程度,而均方误差是用来衡量观测值(真值)与预测值之间的偏差。

④均方根误差(root mean squared error,RMSE)/ 标准误差

均方根误差也称之为标准误差,是均方误差的算术平方根。引入均方根误差与引入标准差(均方查)的原因是完全一致的,即均方误差的量纲与数据量纲不同,不能直观反应 观测值(真值)与预测值之间的偏差,故在均方误差上开平方根,得到均方根误差:
在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Lasso,全称Least Absolute Shrinkage and Selection Operator,是一种常用的回归算法。它在线性回归的基础上引入了L1正则化项,通过对系数进行约束,使得模型的权重更加稀疏,即对不重要的特征进行了去除或减弱。 Lasso的优点在于它能够在高维数据中进行特征选择,避免了过拟合问题。通过减少不重要特征的权重,它能够更好地处理多重共线性的情况。Lasso算法的目标函数是通过最小化均方误差和L1正则化项的和来实现的。 Lasso算法在实际应用中具有广泛的应用。首先,由于Lasso能够进行特征选择,它在特征工程中非常有用。在处理具有大量特征的数据时,Lasso能够帮助我们找到最重要的特征,从而简化模型,提高预测准确率。其次,Lasso也用于稀疏信号恢复,包括图像压缩和恢复、语音处理等领域。另外,Lasso也可以用于分类问题,例如在基因表达数据中的药物响应预测。 然而,Lasso也存在一些限制。首先,由于L1正则化的特性,Lasso在存在高度相关特征的情况下可能会选择其中一个特征,并将其系数置为零,而忽略其他高度相关的特征。其次,Lasso是一个线性模型,对于非线性问题可能效果较差。此外,Lasso对于数据中存在较多噪声的情况可能表现不佳。 总体而言,Lasso算法是一种强大的回归算法,在特征选择和稀疏信号恢复等领域有广泛的应用。但在具体应用时,需要根据问题的特点和数据的特征来进行合理的选择和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值