DeepSeek R1 + 飞书机器人实现AI智能助手

效果

在这里插入图片描述

TFChat项目地址

https://github.com/fish2018/TFChat

腾讯大模型知识引擎用的是DeepSeek R1,项目为sanic和redis实现,利用httpx异步处理流式响应,同时使用buffer来避免频繁调用飞书接口更新卡片的网络耗时。为了进一步减少网络IO消耗,首次调用飞书相关接口会从redis读取token,后续直接从TokenManager对象属性获取,只有token失效时间小于60s时才会重新调用飞书接口获取。

实现思路

1.创建好腾讯大模型知识引擎应用和飞书应用并启用机器人能力,配置事件订阅
2.用户发送消息给机器人后,会post数据给我们的webhook接口
3.webhook接收到数据后解析出用户的open_id和发送给机器人的content
4.初始化消息卡片实例
5.发送消息卡片给该用户
6.调用腾讯大模型知识引擎的HTTP SSE接口,提交用户发送给机器人的content
7.接收HTTP SSE数据,调用飞书接口流式更新文本

参考资料

腾讯大模型知识引擎

创建应用

参考官方文档操作即可:
https://cloud.tencent.com/document/product/1759/104201

腾讯大模型知识引擎>应用接口文档>对话端接口文档(HTTP SSE)

https://cloud.tencent.com/document/product/1759/105561

飞书机器人

创建应用

https://open.feishu.cn/document/home/develop-a-gadget-in-5-minutes/create-an-app

启用机器人能力

https://open.feishu.cn/document/faq/trouble-shooting/how-to-enable-bot-ability

飞书卡片流式更新 OpenAPI 调用指南

https://open.feishu.cn/document/uAjLw4CM/ukzMukzMukzM/feishu-cards/streaming-updates-openapi-overview

### 集成 DeepSeek-R1 到微信构建智能聊天机器人的方法 为了实现这一目标,主要涉及两个部分的工作:一是部署并运行 DeepSeek-R1 模型作为服务端;二是开发能够与微信平台交互的应用程序接口(API),以便接收消息请求并将回复发送回给用户。 #### 服务器端设置 对于服务器端而言,推荐采用云服务平台(如阿里云、腾讯云等),因为它们提供了易于使用的容器化解决方案以及GPU支持,这对于加速大型语言模型推理至关重要。安装必要的依赖项之后,可以通过加载预训练好的 DeepSeek-R1 权重文件启动一个HTTP API服务[^1]: ```bash pip install torch transformers flask ``` 接着编写简单的Flask应用来提供预测功能: ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) tokenizer = AutoTokenizer.from_pretrained("path/to/deepseek-r1") model = AutoModelForCausalLM.from_pretrained("path/to/deepseek-r1").to('cuda') @app.route('/predict', methods=['POST']) def predict(): input_text = request.json['text'] inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": response}) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` 此代码片段展示了如何利用 `transformers` 库加载本地存储的 DeepSeek-R1 模型,并通过 POST 请求的方式接受输入文本,返回由模型生成的回答。 #### 微信小程序/公众号对接 为了让这个AI助手能够在微信环境中工作,需要注册成为开发者并通过微信公众平台获取相应的权限。创建自定义菜单或自动回复规则时可以选择调用上述提到的服务端API来进行对话处理[^2]。 具体来说,在接收到用户的任何消息后,应该将其转发至已搭建好的 HTTP API 进行自然语言理解(NLU)解析和响应生成,然后再把得到的结果封装成合适的XML格式反馈回去。 此外,还可以考虑使用第三方中间件简化整个流程,比如 WeRoBot 或者 wxpy 等 Python 库可以帮助快速建立基于事件驱动的消息处理器。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值