目录
激活函数如Sigmoid、ReLU、Softmax等,通过非线性映射与梯度优化机制,赋予神经网络“思考能力”,既打破线性束缚,又调控信号传递的强度与范围。
一、通俗解释
激活函数就像神经网络的“开关”和“调节器”,它决定了一个神经元是否要被激活,以及激活到什么程度。
Sigmoid:像一条压扁的S型曲线,能把任何输入压缩到0-1之间。比如“考试分数”转成“及格概率”。但它在高分和低分时反应迟钝,容易“卡住”学习进度。
ReLU:简单粗暴的“开关”——输入正数就放行,负数直接归零。类似“只允许优秀员工发言”,但有些员工可能永远没机会开口(死区问题)。
Tanh:升级版Sigmoid,输出范围变成-1到1,像“评分系统”既有好评也有差评,适合需要平衡正负的场景。
Leaky ReLU:给“被淘汰的员工”一点机会,负数输入时输出微小值,避免完全沉默。
Softmax:多选一的“投票机”,把多个输入转成概率分布,总和为1。比如预测图片是猫、狗还是鸟的概率。