人工智能100问☞第29问:常见的激活函数有哪些?

目录

一、通俗解释

二、专业解析

三、权威参考


激活函数如Sigmoid、ReLU、Softmax等,通过非线性映射与梯度优化机制,赋予神经网络“思考能力”,既打破线性束缚,又调控信号传递的强度与范围。

一、通俗解释

激活函数就像神经网络的“开关”和“调节器”,它决定了一个神经元是否要被激活,以及激活到什么程度。

​​Sigmoid​​:像一条压扁的S型曲线,能把任何输入压缩到0-1之间。比如“考试分数”转成“及格概率”。但它在高分和低分时反应迟钝,容易“卡住”学习进度。

​​ReLU​​:简单粗暴的“开关”——输入正数就放行,负数直接归零。类似“只允许优秀员工发言”,但有些员工可能永远没机会开口(死区问题)。

​​Tanh​​:升级版Sigmoid,输出范围变成-1到1,像“评分系统”既有好评也有差评,适合需要平衡正负的场景。

​​Leaky ReLU​​:给“被淘汰的员工”一点机会,负数输入时输出微小值,避免完全沉默。

​​Softmax​​:多选一的“投票机”,把多个输入转成概率分布,总和为1。比如预测图片是猫、狗还是鸟的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算力那些事儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值