AI加速芯片全景图:主流架构和应用场景详解

#新星杯·14天创作挑战营·第11期#

目录

一、为什么AI芯片如此重要?

二、主流AI芯片架构盘点

三、不同芯片在训练与推理中的部署逻辑

四、真实应用案例解读

五、AI芯片发展趋势预测


AI芯片的选择,是AI系统能否高效运行的关键。今天笔者就从架构角度出发,带你系统了解主流AI加速芯片的种类、优劣对比及实际应用场景,帮你理清这个看似“玄学”实则门道满满的领域。

一、为什么AI芯片如此重要?

近年来,随着GPT、DeepSeek、文心一言等大模型在各行业加速落地,AI模型训练和推理的算力需求呈爆炸式增长。传统的通用计算架构(如CPU)在应对海量参数的深度神经网络时显得力不从心,于是以“并行、高吞吐”为核心优化目标的AI加速芯片迅速崛起。

✅ 本质上,AI芯片是为"张量计算"(矩阵乘法、卷积)等AI任务定制的专用计算平台。

AI芯片的三大价值核心:

  • 高吞吐:支持并行执行数千上万个MAC运算(Multiply-Accumulate)

  • 高能效:单位功耗下性能远超CPU/GPU

  • 可部署:适应从数据中心到边缘设备的全场景AI推理

二、主流AI芯片架构盘点

当前AI加速芯片按架构设计主要可分为五类:GPU、TPU、NPU、FPGA 和 ASIC。它们在算力、灵活性、功耗、开发难度上各有特点。

架构类型

典型代表

优势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算力那些事儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值