CH3101 阶乘分解

阶乘分解。。

每个数分解质因数 再合并 复杂度N根号N。

会T。

我第一开始做法是:求出所有1-n所有质数。

遍历1-n,一个一个分解。。。。

复杂度n^2....

 

其实我们求出1-n中所有质数后。

对每个质数算出它的ci即可。

怎么算?

对于一个质数p,求它分解后的的次幂

p,p*2,p*3,……p*b    //p*b<=n.这么些个数都会有p这个因子。总共下取整:n/p个

但是有些p^2的倍数我们算不到,所以再考虑p^2

p^2,2*p^2,3*p^2……b*p^2//  b*p^2<=n..这么些个数都会有p^2这个因子。总共下取整:n/p^2个

同理  有些p^3的倍数算不到,以此类推。

知道p^x>n的时候停止。

很明显  x =0(logp(n)).

算一个质数的复杂度是这个,算n个质数的复杂度为 n*logp(n)

//KX
//#include <bits/stdc++.h>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
typedef double db;
const int M = 1e6+7;
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
int v[M],prime[M];
int pm;
void primes(int n)
{
	for(int i=1;i<=n;i++)v[i]=0;
//	memset(v,0,sizeof(v));//最小质因子
	pm=0;//质数数量
	for(int i=2;i<=n;i++)
	{
		if(v[i]==0)
		{
			v[i]=i;
			prime[++pm]=i;
		}
		for(int j=1;j<=pm;j++)
		{
			//i有比prime[j]更小的质因子,或者超出n的范围,停止循环 
			if(prime[j]>v[i]||prime[j]>n/i)break;
			//prime[j]是合数i*prime[j]的最小质因子 
			v[i*prime[j]]=prime[j];
		}
	 } 
	//for(int i=1;i<=pm;i++)printf("%d\n",prime[i]);
}
int kx[M];
int main()
{
	int n;
	cin>>n;
	primes(n);
	for(int i=1;i<=pm;i++)
	{
		int tp=prime[i];
		ll now=tp;
		while(now<=n)
		{
			kx[i]+=n/now;
			now*=tp;
		}
	}
	for(int i=1;i<=pm;i++)
	if(kx[i])printf("%d %d\n",prime[i],kx[i]);
  	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值