286. 选课

 

树形依赖背包。

树上分组背包

树形DP常规思路

f[i][j].i为阶段,指以i为根的子树,状态j时的情况。

这一题 ,F[i][j],以i为根的子树,选j门课,所得的最大学分。

转移:

相当于要在子树中选择j-1门课(因为必须选i才能选其子节点),使得学分最大。

这类问题可以转化为分组背包来做:

设i的子树有x个。

在x组中选体积j-1的物品(把课的个数转化为体积),每组至多选一个,每组有j-1个物品,物品的体积是1  --  j-1

因为每个儿子节点必须先选了才能选他的儿子节点。第i个儿子节点选k个相当于,选了体积为k的物品,价值为f[i][k].

然后直接转移即可

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 LL;
//typedef unsigned long long ull;
//#define F first
//#define S second
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pdd;
const ld PI=acos(-1);
const ld eps=1e-9;
//unordered_map<int,int>mp;
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const int seed=131;
const int M = 1e4+7;
struct node
{
	int nxt,to;
}ee[M];
int cnt,head[M];
void add(int u,int v)
{
	ee[++cnt].to=v;
	ee[cnt].nxt=head[u];
	head[u]=cnt;
}
int du[M], s[M];
int n,m;
int f[M][M];//以i节点为根的子树,选择j个 学科 得到的最大分数
void dfs(int u)
{
	f[u][0]=0;
	//cout<<u<<endl;
	for(int i=head[u];i;i=ee[i].nxt)//分组背包 对应组数 
	{
		int v=ee[i].to;
		dfs(v);
		for(int j=m;j>=1;j--)//分组背包体积
		for(int k=1;k<=j;k++)//分组背包  每组的个数 
		{
			if(j>=k)
			f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]);
		}
	}
	if(u!=0)
	for(int i=m;i>=1;i--)
	f[u][i]=f[u][i-1]+s[u]; 
}
int main()
{
	ios::sync_with_stdio(false);
  	cin.tie(0);
  	cin>>n>>m;
  	for(int i=1;i<=n;i++)
  	{
  		int x,y;
  		cin>>x>>y;s[i]=y;
		add(x,i);du[i]++;
	}
	for(int i=1;i<=n;i++)if(du[i]==0)add(0,i);
	dfs(0);
	cout<<f[0][m]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值