树形依赖背包。
树上分组背包
树形DP常规思路
f[i][j].i为阶段,指以i为根的子树,状态j时的情况。
这一题 ,F[i][j],以i为根的子树,选j门课,所得的最大学分。
转移:
相当于要在子树中选择j-1门课(因为必须选i才能选其子节点),使得学分最大。
这类问题可以转化为分组背包来做:
设i的子树有x个。
在x组中选体积j-1的物品(把课的个数转化为体积),每组至多选一个,每组有j-1个物品,物品的体积是1 -- j-1
因为每个儿子节点必须先选了才能选他的儿子节点。第i个儿子节点选k个相当于,选了体积为k的物品,价值为f[i][k].
然后直接转移即可
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 LL;
//typedef unsigned long long ull;
//#define F first
//#define S second
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pdd;
const ld PI=acos(-1);
const ld eps=1e-9;
//unordered_map<int,int>mp;
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const int seed=131;
const int M = 1e4+7;
struct node
{
int nxt,to;
}ee[M];
int cnt,head[M];
void add(int u,int v)
{
ee[++cnt].to=v;
ee[cnt].nxt=head[u];
head[u]=cnt;
}
int du[M], s[M];
int n,m;
int f[M][M];//以i节点为根的子树,选择j个 学科 得到的最大分数
void dfs(int u)
{
f[u][0]=0;
//cout<<u<<endl;
for(int i=head[u];i;i=ee[i].nxt)//分组背包 对应组数
{
int v=ee[i].to;
dfs(v);
for(int j=m;j>=1;j--)//分组背包体积
for(int k=1;k<=j;k++)//分组背包 每组的个数
{
if(j>=k)
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]);
}
}
if(u!=0)
for(int i=m;i>=1;i--)
f[u][i]=f[u][i-1]+s[u];
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
for(int i=1;i<=n;i++)
{
int x,y;
cin>>x>>y;s[i]=y;
add(x,i);du[i]++;
}
for(int i=1;i<=n;i++)if(du[i]==0)add(0,i);
dfs(0);
cout<<f[0][m]<<endl;
return 0;
}