D:n>=3均不可行,n==2用勾股定理搞一搞就行
I:
对于n!个排列,共有n!*(n-1)个相邻数,n*(n-1)/ 2种路径
所以每种路径有2*(n-1)! 个
相当于求:所以路径和的 2*(n-1)!倍
dfs统计结果即可
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb push_back
const double PI= acos(-1.0);
const int M = 1e5+7;
int head[M],cnt=1;
void init(int n){cnt=1;for(int i=0;i<=n;i++)head[i]=0;}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}
const int mod =1e9+7;
ll fac[M],siz[M];
ll ans=0,nm,n;
ll qpow(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1)ans=ans*a%mod;
a=a*a%mod;
b/=2;
}
return ans;
}
void dfs(int x,int fa)
{
siz[x]=1;
for(int i=head[x];i;i=ee[i].nxt)
{
int y=ee[i].to,w=ee[i].w;
if(y==fa)continue;
ans=(ans+(ll)(n-1)*w%mod*nm*2%mod)%mod;
//cout<<" "<<n-1<<" "<<w<<" "<<nm<<endl;
dfs(y,x);
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int u,v,w;
fac[0]=1;
for(int i=1;i<=100000;i++)fac[i]=fac[i-1]*i%mod;
while(cin>>n)
{
for(int i=1;i<=n;i++)head[i]=0;cnt=1;
ans=0;
for(int i=1;i<n;i++)cin>>u>>v>>w,add(u,v,w),add(v,u,w);
nm=fac[n-2]*2%mod;//qpow(n-1,mod-2);
// cout<<fac[n-2]<<" "<<nm<<endl;
dfs(1,0);
cout<<ans<<endl;
}
return 0;
}
J:
显然如果网格是1000*1000则可以直接DP
这里我们先离散化,然后按x排序,枚举,每个点只会由xy坐标均比他小的点转移过来。
其实就是用二位偏序维护DP转移。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define re register
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const double PI= acos(-1.0);
const int M = 4e5+7;
/*
int head[M],cnt=1;
void init(int n){cnt=1;for(int i=0;i<=n;i++)head[i]=0;}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}
*/
ll dp[M];
int lx[M],ly[M],sx,sy,n;
struct node{
int x,y,w;
}p[M];
bool cmp(node a,node b)
{
if(a.x==b.x)return a.y>b.y;
return a.x<b.x;
}
ll c[M];
void up(int x,int d)
{
while(x<=n)
{
c[x]=max(c[x],(ll)d);
x+=x&(-x);
}
}
ll qu(int x)
{
ll ans=0;
while(x)
{
ans=max(ans,c[x]);
x-=x&(-x);
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int T;
cin>>T;
while(T--)
{
int x,y,w;
cin>>n;
sx=sy=0;
for(int i=1;i<=n;i++)c[i]=dp[i]=0;
for(int i=1;i<=n;i++)
{
cin>>x>>y>>w;
lx[++sx]=x;
ly[++sy]=y;
p[i]=node{x,y,w};
}
sort(lx+1,lx+1+sx);
sort(ly+1,ly+1+sy);
sx=unique(lx+1,lx+1+sx)-(lx+1);
sy=unique(ly+1,ly+1+sy)-(ly+1);
sort(p+1,p+1+n,cmp);
ll ans=0;
for(int i=1;i<=n;i++)
{
p[i].x=lower_bound(lx+1,lx+1+sx,p[i].x)-lx;
p[i].y=lower_bound(ly+1,ly+1+sy,p[i].y)-ly;
int nw=p[i].y;
ll tp=qu(nw-1);
dp[nw]=max(dp[nw],tp+p[i].w);
up(nw,dp[nw]);
ans=max(ans,dp[nw]);
}
cout<<ans<<endl;
}
return 0;
}
C:
题目要求运算过程均小于p
我们直接让加法乘法均在模p意义下进行即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI= acos(-1.0);
const int M = 4e5+7;
int main()
{
int T;
cin>>T;
while(T--)
{
int p;
cin>>p;
for(int i=0;i<p;i++)
for(int j=0;j<p;j++)
{
if(j==p-1)printf("%d\n",(i+j)%p);
else printf("%d ",(i+j)%p);
}
for(int i=0;i<p;i++)
for(int j=0;j<p;j++)
{
if(j==p-1)printf("%d\n",i*j%p);
else printf("%d ",i*j%p);
}
}
return 0;
}
A:
贪心:
我们从前往后处理,把每一天的价格都放进小根堆里,表示待买物品。
若小根堆堆顶的元素小于当前元素j,则小根堆堆顶的元素i必须买更优,但不一定是当前天卖优,我们先假设当前天卖掉。
后面若有更合适的天一定是价格大于当前天的价格,这时我们再加一个反悔操作即可。
就是若当前天卖物品,则往小根堆里再仍一次当前物品。这样后面买当前物品,k天卖物品,表示直接在第i天买,第k天卖。
而小根堆还有一个j,因为这个j还可以被买入,在后面卖出。
这样跑完就是最优解
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI= acos(-1.0);
const int M = 4e5+7;
int a[M];
map<int,int>mp;
priority_queue<int,vector<int>,greater<int> >q;
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
ll ans=0;int cnt=0;
mp.clear();
while(!q.empty())q.pop();
for(int i=1;i<=n;i++)
{
if(!q.empty()&&q.top()<a[i])//当前物品可以卖
{
int x=q.top();q.pop();
mp[a[i]]++;
ans+=a[i]-x;//卖掉当前物品,买入价值为x的物品
if(mp[x]==0)cnt+=2;//
else mp[x]--;
q.push(a[i]);//后面有价值更大的物品y买a[i],卖y赚的钱等价于买x卖y,
//而后面若有不止一个价值大于a[i]的物品,则a[i]有可能被买入,这里a[i]入队两次是为了考虑这种情况
}
q.push(a[i]);//队列里存的是待买的物品
}
printf("%lld %d\n",ans,cnt);
}
return 0;
}