2018CCPC网络赛 [Cloned]

D:n>=3均不可行,n==2用勾股定理搞一搞就行

I:

对于n!个排列,共有n!*(n-1)个相邻数,n*(n-1)/ 2种路径

所以每种路径有2*(n-1)! 个

相当于求:所以路径和的  2*(n-1)!倍

dfs统计结果即可

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb push_back
const double PI= acos(-1.0);
const int M = 1e5+7;

int head[M],cnt=1;
void init(int n){cnt=1;for(int i=0;i<=n;i++)head[i]=0;}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}
const int mod =1e9+7;

ll fac[M],siz[M];
ll ans=0,nm,n;
ll qpow(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans=ans*a%mod;
        a=a*a%mod; 
        b/=2;
    }
    return ans;
}
void dfs(int x,int fa)
{
    siz[x]=1;
    for(int i=head[x];i;i=ee[i].nxt)
    {
        int y=ee[i].to,w=ee[i].w;
        if(y==fa)continue;
        ans=(ans+(ll)(n-1)*w%mod*nm*2%mod)%mod; 
        //cout<<"  "<<n-1<<" "<<w<<" "<<nm<<endl;
        dfs(y,x);
        
    }
} 
int main()
{
    ios::sync_with_stdio(false);
      cin.tie(0);
      int u,v,w;
      fac[0]=1;
    for(int i=1;i<=100000;i++)fac[i]=fac[i-1]*i%mod; 
    
    while(cin>>n)
    {
        for(int i=1;i<=n;i++)head[i]=0;cnt=1;
        ans=0; 
        for(int i=1;i<n;i++)cin>>u>>v>>w,add(u,v,w),add(v,u,w);
        nm=fac[n-2]*2%mod;//qpow(n-1,mod-2);
    //    cout<<fac[n-2]<<" "<<nm<<endl;
        dfs(1,0);
        cout<<ans<<endl;
    }
    return 0;
}

J:

显然如果网格是1000*1000则可以直接DP

这里我们先离散化,然后按x排序,枚举,每个点只会由xy坐标均比他小的点转移过来。

其实就是用二位偏序维护DP转移。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define re register
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const double PI= acos(-1.0);
const int M = 4e5+7;
/*
int head[M],cnt=1;
void init(int n){cnt=1;for(int i=0;i<=n;i++)head[i]=0;}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}
*/
ll dp[M];
int lx[M],ly[M],sx,sy,n;
struct node{
	int x,y,w;
}p[M];
bool cmp(node a,node b)
{
	if(a.x==b.x)return a.y>b.y;
	return a.x<b.x;
} 
ll c[M];
void up(int x,int d)
{
	while(x<=n)
	{
		c[x]=max(c[x],(ll)d);
		x+=x&(-x);
	}
}
ll qu(int x)
{
	ll ans=0; 
	while(x)
	{
		ans=max(ans,c[x]);
		x-=x&(-x);
	}
	return ans;
}
int main()
{
	ios::sync_with_stdio(false);
  	cin.tie(0);
  	int T;
  	cin>>T;
  	while(T--)
  	{
  		int x,y,w;
  		cin>>n;
  		sx=sy=0;
  		for(int i=1;i<=n;i++)c[i]=dp[i]=0;
  		for(int i=1;i<=n;i++)
  		{
  			cin>>x>>y>>w;
  			lx[++sx]=x;
  			ly[++sy]=y;
  			p[i]=node{x,y,w};
		}
		sort(lx+1,lx+1+sx);
		sort(ly+1,ly+1+sy);
		sx=unique(lx+1,lx+1+sx)-(lx+1);
		sy=unique(ly+1,ly+1+sy)-(ly+1);
		sort(p+1,p+1+n,cmp);
		ll ans=0;
  		for(int i=1;i<=n;i++)
  		{
  			p[i].x=lower_bound(lx+1,lx+1+sx,p[i].x)-lx;
  			p[i].y=lower_bound(ly+1,ly+1+sy,p[i].y)-ly;
  			int nw=p[i].y;
  			ll tp=qu(nw-1);
  			dp[nw]=max(dp[nw],tp+p[i].w);
  			up(nw,dp[nw]);
  			ans=max(ans,dp[nw]);
		}
  		cout<<ans<<endl;
	}
	return 0;
}

C:

(a+b)^p \equiv (a+b)

a^p+b^p \equiv a+b

题目要求运算过程均小于p

我们直接让加法乘法均在模p意义下进行即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI= acos(-1.0);
const int M = 4e5+7;
int main()
{
  	int T;
  	cin>>T;
  	while(T--)
  	{
  		int p;
  		cin>>p;
  		for(int i=0;i<p;i++)
  		for(int j=0;j<p;j++)
  		{
	  		if(j==p-1)printf("%d\n",(i+j)%p);
	  		else printf("%d ",(i+j)%p);
		}
		for(int i=0;i<p;i++)
  		for(int j=0;j<p;j++)
  		{
	  		if(j==p-1)printf("%d\n",i*j%p);
	  		else printf("%d ",i*j%p);
		}
	}
	return 0;
}

A:

贪心:

我们从前往后处理,把每一天的价格都放进小根堆里,表示待买物品。

若小根堆堆顶的元素小于当前元素j,则小根堆堆顶的元素i必须买更优,但不一定是当前天卖优,我们先假设当前天卖掉。

后面若有更合适的天一定是价格大于当前天的价格,这时我们再加一个反悔操作即可。

就是若当前天卖物品,则往小根堆里再仍一次当前物品。这样后面买当前物品,k天卖物品,表示直接在第i天买,第k天卖。

而小根堆还有一个j,因为这个j还可以被买入,在后面卖出。

这样跑完就是最优解

 

 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI= acos(-1.0);
const int M = 4e5+7;
int a[M];
map<int,int>mp;
priority_queue<int,vector<int>,greater<int> >q;
int main()
{
  	int T;
  	cin>>T;
  	while(T--)
  	{
  		int n;
  		scanf("%d",&n);
  		for(int i=1;i<=n;i++)scanf("%d",&a[i]);
  		ll ans=0;int cnt=0;
  		mp.clear();
  		while(!q.empty())q.pop();
  		for(int i=1;i<=n;i++)
  		{
  			if(!q.empty()&&q.top()<a[i])//当前物品可以卖 
  			{
			  	int x=q.top();q.pop();
				  mp[a[i]]++;
  				ans+=a[i]-x;//卖掉当前物品,买入价值为x的物品
				if(mp[x]==0)cnt+=2;// 
				else mp[x]--;
				q.push(a[i]);//后面有价值更大的物品y买a[i],卖y赚的钱等价于买x卖y,
				//而后面若有不止一个价值大于a[i]的物品,则a[i]有可能被买入,这里a[i]入队两次是为了考虑这种情况 
			}
  			q.push(a[i]);//队列里存的是待买的物品 
		}
		printf("%lld %d\n",ans,cnt); 
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值