n个数切成k份,求切出数的平方和的最小值.
有个比较显然的结论:
对于一个数x,把它分成y份,求平方和sm,使得sm最小的分法一定是均分。
而把一个数分成y份,平方和与分成y-1份的平方和减量设为Cy,分成z份,平方和与分成z-1份的平方和减量设为Cz。显然有:if(y<z)则Cy>Cz。
这里说明了我们可以贪心的分萝卜,当前最优一定是全局最优,因为后面的分块一定不优于当前分块sm的减量。
于是便有了贪心:
刚开始n个数,还需要分出k-n块。
我们把每个数存到优先队列里,优先队列存:这个数已经被分了num份,这个数分成num份后的sum:now,这个数分成num+1份后的sum:nxt。
这个数的id。其中优先队列nxt-now 排序,大的值在前面。
这样每次选择都是让sum减少最多的情况,而且后面每次减量递减,也就是当前最大同时也是全局最大。所以可以贪心!
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define re register
#define ls (o<<1)
#define rs (o<<1|1)
//#define m (l+r)/2
#define pb push_back
typedef pair<int,int> pii;
const double PI= acos(-1.0);
const int M = 1e5+7;
/*
int head[M],cnt=1;
void init(int n){cnt=1;for(int i=0;i<=n;i++)head[i]=0;}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}
*/
ll a[M];
/*
每次分胡萝卜,减少的sum是逐渐递减的
*/
struct node{
ll val;//如果再分一次,减少的sum
ll now;//当前胡萝卜不分对sum的贡献
ll nxt;//把当前胡萝卜再分一次后对sum的贡献
int id;
int num;//当前已经分了几次
bool operator <(const node &r)const{
return val<r.val;
}
};
priority_queue<node>q;
ll gao(int id,int num){//对第id个胡萝卜再次分块,分成num+1块,对sum的贡献
if(num>=a[id])return 1e18;
num++;
ll em=a[id]/num;//平均每个胡萝卜大小是em
int z=a[id]%num;//最后有z个胡萝卜大小是em+1
ll ans=0;
for(int i=1;i<=z;i++) ans+=(em+1)*(em+1);
for(int i=z+1;i<=num;i++)ans+=em*em;
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n,k;
cin>>n>>k;
ll ans=0;
for(int i=1;i<=n;i++){
cin>>a[i];
ll now=a[i]*a[i];
ll nxt=gao(i,1);
// cout<<i<<" - "<<now<<" "<<nxt<<endl;
q.push(node{now-nxt,now,nxt,i,1});
ans+=now;
}
int num = k-n;
// cout<<ans<<endl;
while(num--){
node tp=q.top();q.pop();
ans-=tp.val;
// cout<<tp.id<<" - > "<<tp.val<<endl;
ll nxt=gao(tp.id,tp.num+1);
q.push(node{tp.nxt-nxt,tp.nxt,nxt,tp.id,tp.num+1});
}
cout<<ans<<endl;
return 0;
}