Ο
.
题号 | A | B | C | D | E | F | G | H | I | J | K | L |
状态 | Ο | . | . | . | . | . | Ο | . | . | . | . | . |
A:思维,输出n次n叠加即可
B:10进制矩阵快速幂,不会矩阵 咕咕咕
G:dp
最初想的比较好理解的dp是
dp[i][j][k],处理到第i位,长度位j,首位是k的满足题意子序列的方案数。
dp2[i][j][k],处理到第i位,长度位j,首位是k的任意子序列的方案数。
递推很简单,从i从n-1扫描,dp2肯定是由前一位,选第i位和不选第i位转移
dp分为当前位是否大于对应的t串位置(从后往前,长度为j)。大于则由dp2 递推
否则由dp递推(dp维护的一定是严格大于,即处理了j位是严格大于对应后缀t,j位的)
上述递推过程想明白就会发现,第三位k完全没必要,
dp2可以用组合数表示
然后用滚动数组思想可以把第一位给去掉
就得到如下代码。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pdd;
#define F first
#define S second
const ll INF64=8000000000000000000LL;
const int INF=0x3f3f3f3f;
const ld PI=acos(-1);
const ld eps=1e-9;
const ll MOD=ll(998244353);
const int M = 3e3 + 10;
void modup(ll&x){if(x>=MOD)x-=MOD;}
//unordered_map<int,int>mp;
ll dp[M];//到i,长度j,满足a>b方案
char a[M],b[M];
ll c[M][M],sc[M][M];
void dabiao()
{
for (int i=1;i<=3000;i++)
{
c[i][0]=1;
c[i][i]=1;
for (int j=1;j<i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%998244353;
}
}
int main()
{
int t;
cin>>t;
dabiao();
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
scanf("%s%s",a+1,b+1);
for(int j=0;j<=m;j++)
dp[j]=0;
ll ans=0;
dp[1]=(a[n]>b[m]);
for(int i=n-1;i>=1;i--)
{
for(int j=min(m,n-i+1);j>=1;j--)
{
// dp[j]+=dp[j],modup(dp[j]);
if(a[i]>b[m-j+1])//如果i位 a更大 ,可以由长度j-1任意首位递推
dp[j]+=c[n-i][j-1],modup(dp[j]);
else if(a[i]==b[m-j+1])
dp[j]+=dp[j-1],modup(dp[j]);
// printf("%d-- %d -- %d\n",i,j,dp[j]);
}
//ans+=dp[i][m];modup(dp[i][m]);
}
ans+=dp[m],modup(dp[m]);
for(int i=1;i<=n-m;i++)
{
if(a[i]>'0')
{
for(int j=m;j<=n-i;j++)
ans=(ans+c[n-i][j])%MOD;
}
}
modup(ans);
printf("%lld\n",ans);
}
return 0;
}