牛客网多校第五场 inv (思维+逆序)

链接:https://www.nowcoder.com/acm/contest/143/D
来源:牛客网
 

Kanade has an even number n and a permutation b of all of the even numbers in [1,n]

Let a denote an array [1,3,5....n-1] , now you need to find a permutation of [1,n] satisfy both a and b are subsequence of it and minimize the number of inverse pair of it.

 

输入描述:

The first line has a positive even integer n

The second line has n/2 positive even integers b[i]

输出描述:

Output the number of inverse pair of the permutation you find.

示例1

输入

复制

6
2 6 4

输出

复制

2

说明

[1,2,3,5,6,4]

题意:

给定一个【1,n】里所有偶数的排列,b,其中n为偶数,现在有数组a = 【1,3,5,7,....n-1】,现在要求归并a,b使得逆序对数量最少。

思路:

例如    8 6 4 2

我们考虑每个奇数如何放置。

对于7来说,我们考虑比7大的数,那么就只有8一个,如果我们把7放在8前面,那么7将不会与比她大的数产生逆序。

可是我们还要考虑她和比她小的数产生逆序,那么考虑8的后面,若有比7小的数,那么逆序++,并且由7产生的逆序最多有一个,因为我们总可以把7放在最后。

现在考虑5,比5大的数就有两个了,那么由5产生的逆序最多为两个。我们考虑 8 6 的后面,如果没有比5小的数,可以把5放在8,6前面,逆序为0,若果有一个逆序为1,否则取最多2.

由上面的分析可以看出,对于每个奇数,我们考虑比她大的偶数的个数假设为x,那么该奇数最多产生x对逆序,如果,比他大的数可以向后匹配比这个奇数小的数,假设可以匹配出y对来,那么该奇数逆序的贡献为min(x,y);

对于 8 6 4 2 来说考虑5    (8,4),(6,2) 两对,8,6有两个,故而 x=y=2;

那么如何统一计算结果呢????

如果单单考虑5, 遇到8>5 我们可以先存起来,6>5存起来,4<5 取出来8凑一对,2<5取出6凑一对。

设最终逆序为ans = 0;

若统一考虑所有情况。我们可以考虑优先队列来存,

8入队              8 并不小于对中最大值继续

6入队              6 < 8 考虑(8,6)这个对可以使7的逆序加一      ans++

                       又因为对于7来说8只能向后匹配一次已经用了,可是对于小于6的数来说(8,6)的匹配对他们没有任何影响,那                         8 该何去何从 ? 很简单,只要扔掉8,加入一个6就好了,6 肯定不会对7的结果产生影响了,但是可以对剩下的                           产生影响。

                       此时队列就有 6 6,两个6

4入队             4 < 6 一个6出队5这个逆序加一    ans++;

2入队             2 < 6 一个6出队3,5逆序加一     ans+=2;

emmmmm 代码就很简单了,,,

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
int a[maxn],tree[maxn];
int n;

int lowbit(int x)
{
	return x&(-x);
}

void add(int x,int v)
{
	for(;x <= n; x+=lowbit(x))
	    tree[x]+=v;
}

int sum(int x)
{
	int ans = 0;
	for(;x >= 1; x-=lowbit(x))
    	ans+=tree[x];
    return ans;
}
int main()
{
	scanf("%d",&n);
	for(int i = 0; i < n/2; i++)
	{
		scanf("%d",&a[i]),a[i]/=2;
	}
	long long ans = 0;
	for(int i = 0; i < n/2; i++)
	{
		ans+=i-sum(a[i]),add(a[i],1);
	}
	priority_queue<int>pq;
	for(int i = 0; i < n/2; i++)
	{
		pq.push(a[i]);
		if(pq.top() > a[i])
		{
			ans += pq.top()-a[i];
			pq.pop();
			pq.push(a[i]);			
		}
	}
	cout << ans <<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值