看完《哪吒2》,热泪盈眶!

大家好,我是程序员小灰。

在最近这半年时间里,国内诞生了三个奇迹。

第一个奇迹是国产3A游戏《黑神话:悟空》,这款游戏发售不到半年,在steam平台的累计收入达到历史第二名,并且荣获了年度最佳游戏奖、纵使手残仍大爱奖、杰出剧情游戏奖三大奖项。

第二个奇迹是国产AI模型DeepSeek,这款大模型是目前公认最强的国产模型,也是全球最强的开源模型,其智能水平与OpenAI的o1模型不相上下,但训练成本要比前者低得多。

第三个奇迹就是我们今天要讨论的主角,动画电影《哪吒之魔童闹海》,简称《哪吒2》。

71dd0b9acbdcb84c8202dc158c5c5e92.png

到目前为止,《哪吒2》的累计票房超过138亿,在全球影史票房榜排名第8,估计很快就能超过位列第7的《蜘蛛侠:英雄无归》。

f0a45e48f0191297f9eae8a30fcc931c.png

小灰在春节期间一直想去看《哪吒2》,但实在太忙抽不出时间,直到上周日才终于忙里偷闲去电影院看了一场。

看完《哪吒2》,小灰的第一感受就是两个字:“震撼”。

在这部影片里,无论是场景的渲染还是激烈的打斗场面都充满了质感,制作水平丝毫不亚于国际一流的动画作品。

动画中每一个人物的刻画也非常细腻,哪吒、敖丙、李靖夫妇、申公豹父子......他们的形象鲜活,让许多人看到了自己的影子。

不过,《哪吒2》也有它的不足之处,小灰认为影片的剧情还有一定提升空间。

在互联网上,《哪吒2》引起了网友们的热烈讨论,有人还拿出上海美术电影制片厂在1979年推出的动画片《哪吒闹海》,与《哪吒2》进行对比,分析孰优孰劣。

66122ad07a20b7386742d8e22015d722.png

这两部动画的发行时间相差近50年,其实并没有多少可比性,但如果一定要选择一部我最喜欢,那小灰还是倾向于《哪吒闹海》。

但无论怎样,《哪吒2》都是中国影史的奇迹、世界影史的奇迹。希望国内能涌现出更多像《哪吒2》这样的史诗级作品,成就更多像饺子一样的天才导演。

2025年刚刚开始,不知这一年里还会有多少惊喜等待着我们,让我们一起拭目以待吧!

< END >

为了让更多的朋友学习和掌握DeepSeek,小灰创建了一个DeepSeek交流群,大家可以扫码添加小灰微信,并备注“副业”,小灰给大家拉到群里。

图片

此外,我们的知识星球小灰DeepSeek副业俱乐部已经超过6900人了,还没加入的小伙伴请抓紧机会扫码加入:

图片

### 哪吒2 数据可视化特性 哪吒2 的数据可视化主要依赖于 Python 生态中的多种工具和技术来完成,以下是其特性和功能的具体描述: #### 1. **数据采集** 为了实现可视化的基础工作,通常需要先收集相关数据。对于豆瓣电影《哪吒2》,可以通过爬虫技术抓取用户评论数据,这些数据包括但不限于用户名、观看状态、评分、发布时间、地区、有用数以及评论内容等字段[^1]。 #### 2. **数据处理与清洗** 在进行可视化之前,原始数据可能需要经过一系列预处理操作,例如去除重复项、填补缺失值、转换数据格式等。这一步骤可以借助 Pandas 库高效完成。Pandas 提供了强大的 DataFrame 结构支持复杂的数据操作和分析。 #### 3. **数据可视化方法** Python 中有多个库可用于数据可视化,其中 Matplotlib 是最常用的绘图库之一。它能够创建各种类型的图表,比如折线图、柱状图、散点图甚至更复杂的哑铃图。例如,在 `health.xlsx` 文件的例子中,通过将城市名称设为 Y 轴标签,并利用 `pct_2014` 和 `pct_2013` 列作为数据点绘制了一条连接两点的直线形成哑铃图[^2]。 另外,Seaborn 是基于 Matplotlib 构建的一个高级接口,提供了更加美观默认样式和丰富的颜色方案选项,适合快速生成统计图形。 #### 4. **图表辅助元素定制** 当构建较为专业的视觉展示时,往往还需要调整一些细节部分以增强可读性和吸引力。例如,可以通过设置 `fancybox=True` 来给图例添加带有圆角矩形样式的边框[^3]。此外还有其他众多自定义属性可供调节,像字体大小、线条粗细等等都可以灵活设定满足特定需求。 #### 5. **实际案例应用** 具体到 “哪吒2”的数据分析项目上,可以从下载链接提供的资源包里找到详细的实施过程说明文档及配套脚本文件[^4]。该项目涵盖了从网络请求获取公开API接口返回JSON结构体形式的信息直至最终呈现结果整个流程环节。 ```python import matplotlib.pyplot as plt import seaborn as sns # 创建样本数据集 data = {'City': ['Beijing', 'Shanghai', 'Guangzhou'], '2013 Percentage': [60, 70, 80], '2014 Percentage': [65, 75, 85]} df = pd.DataFrame(data) sns.set_style("whitegrid") fig, ax = plt.subplots() ax.hlines(y=df['City'], xmin=df['2013 Percentage'], xmax=df['2014 Percentage'], color='skyblue') ax.scatter(df['2013 Percentage'], df['City'], color='firebrick', label="2013") ax.scatter(df['2014 Percentage'], df['City'], color='cornflowerblue', label="2014") plt.xlabel('Percentage (%)') plt.ylabel('Cities') plt.title('Dumbbell Chart Example') legend_properties = {'weight':'bold'} lgd = ax.legend(prop=legend_properties, loc='upper center', bbox_to_anchor=(0.5,-0.1)) for spine in ["top", "right"]: ax.spines[spine].set_visible(False) plt.tight_layout(rect=[0,0.1,1,1]) plt.show() ``` 上述代码片段展示了如何使用 Seaborn 和 Matplotlib 绘制一条简单的哑铃图实例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值