logit, logistic和sigmoid的区别

1. 核心定义

​(1) Logit

  • 数学定义​:
    Logit函数是概率p∈(0,1)的对数几率​(log-odds)转换:

    它将概率p映射到(−∞,+∞),常用于统计学中描述事件发生的相对可能性。

  • 机器学习中的logit​:
    指模型的原始未归一化输出​(如神经网络的最后一层线性输出),通常作为Softmax或Sigmoid函数的输入,用于生成概率。

​(2) Logistic函数

  • 数学定义​:
    Logistic函数是Logit函数的反函数,用于将实数z∈(−∞,+∞)映射到概率p∈(0,1):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值