1. 核心定义
(1) Logit
-
数学定义:
Logit函数是概率p∈(0,1)的对数几率(log-odds)转换:它将概率p映射到(−∞,+∞),常用于统计学中描述事件发生的相对可能性。
-
机器学习中的logit:
指模型的原始未归一化输出(如神经网络的最后一层线性输出),通常作为Softmax或Sigmoid函数的输入,用于生成概率。
(2) Logistic函数
-
数学定义:
Logistic函数是Logit函数的反函数,用于将实数z∈(−∞,+∞)映射到概率p∈(0,1):