二元交叉熵损失为何与 logits 结合使用

先抛出个问题:

二元分类任务里,为什么损失函数会和logits直接结合,而不是先通过sigmoid函数转换成概率?


在PyTorch中,BCEWithLogitsLoss(二元交叉熵损失与logits结合)是一个将Sigmoid激活函数二元交叉熵损失(BCE)​合并计算的损失函数。其核心目的是在保证数值稳定性的前提下,直接处理模型输出的原始logits(未归一化的分数),而无需显式应用Sigmoid函数。这种设计背后有多个关键原因,涵盖数值稳定性、计算效率和梯度优化等方面。


​一、什么是logits?​

  • 定义​:
    logits是模型最后一层线性层的输出值,未经任何激活函数(如Sigmoid或Softmax)处理,其取值范围为(−∞,+∞)。

    • 在二分类任务中,模型最后一层通常输出1个logit值,表示样本属于正类的置信度。
    • 在多标签分类中,模型输出多个logit值</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值