如何使用NSD8381的堵转检测功能

1.前言

上篇文章(如上链接)介绍了如何基于S32K144驱动NSD8381,当时因为篇幅原因,没有介绍NSD8381的堵转检测功能。本文借助freemaster,让读者更方便的理解NSD8381的堵转检测功能。

2.原理介绍

纳芯微官网的步进电机驱动NSD8381调试指南有介绍NSD8381的堵转检测功能,相关内容摘录如下。

堵转检测原理

上图左边是步进电机绕组的等效模型。当电机正常转动的时候,根据上图右边的公式可以得到电机绕组两侧的电压Vmotor。根据公式可得到电机的反电势BEMF,其中N为线圈的绕组数量,B代表磁场强度,A是被电机磁场所包围的面积,w是电机转动的角速度。

由公式可知,当流过电机的电流为零时,电机绕组两侧的电压是BEMF,即反电势电压。由公式可知,反电势电压和电机的角速度成正比,当电机堵转的时候,速度接近于零,此时反电势也接近于零。因此,可以利用检测绕组电流为零时的绕组电压来检测反电势。

补充说明:

如下图所示,以1/8微步为例,在一个正弦波周期内,A、B线圈分别有两次过零step。

1/8微步示例

3.功能实现

3.1 相关寄存器介绍

堵转相关寄存器

上图标注都是和堵转检测相关的寄存器,说明如下:

  • CV_EN,用于开启NSD8381在四个过零step进行反电动势测量
  • PWM_FREQ_SEL[1:0]CV_DELAY[4:0] ,前者配置调节电流的PWM的频率,后者设置在过零step之后多长时间进行采样。

PWM_FREQ_SEL[1:0] 使用默认值0x00,即使用20K的PWM调制频率,周期为50us;CV_DELAY[4:0]配置为7,那么NSD8381在过零step之后350us处采集反电动势。

  • CV_STALL_NUM[2:0] ,当采集的反电动势值连续不在[CVLLA; CVUL]的次数达到CV_STALL_NUM。就会将STA_1寄存器的STALL bit置1。
  • CV_REG_IND[1:0] ,用来指示上一次过零step的位置,从而去对应的CV寄存器读取电动势值。
  • STALL_HOLD_EN,用来设置检测堵住之后是否切换到HOLD模式。
  • CVA[9:0]CVB[9:0]CVC[9:0]CVD[9:0] ,用于保存读取的反电动势值。

以读取CVA[9:0]为例,计算公式为$ V_{BEMF} = \frac{CVA[9:0]}{1023} * 28V $

  • CVUL[9:0], 反电动势值比较的上限值。
  • CVLLB[9:0],反电动势值比较的下限警告值。
  • CVLLA[9:0],反电动势值比较的下限值。

3.2 堵转配置流程

摘录纳芯微官网介绍的堵转配置流程图如下:

NSD8381堵转配置

下面基于这套流程图进行介绍。

3.2.1 电机正常运行及数据测量

  1. 基于上篇文章的配置,让电机正常运行,测得的波形如下图,其中CH1为OUTA1引脚电压,CH2为OUTA2引脚电压,CH3为OUTA引脚电流。

正常运行时A线圈电压电流波形

  1. 放大电流过零点处的波形,发现在过零step后350us处采集反电动势电压是比较稳定,在0.2V左右。
    电流过零step处电压波形

3.2.2 软件配置相关寄存器

  1. 在NSD8381初始化代码中增加对CONFIG_5寄存器的配置,如下图红框所示。

CONFIG_5寄存器配置

  1. 在主循环中增加对CVA、CVB、CVC、CVD的读取,并基于CONFIG_5寄存器中的CV_REG_IND[1:0]判断当前反电动势的取值使用CVA、CVB、CVC、CVD的哪一个,实现这部分功能的代码如下。
Phase_Count = NSD8381drv_GetPH();

if(Phase_Count == 0)
{
    Coil_Volt_A = NSD8381drv_ReadcoilBEMF(MCVA);
    printf("voltage of coil A  is %d\r\n", Coil_Volt_A);
    Coil_Volt_B = NSD8381drv_ReadcoilBEMF(MCVB);
    printf("voltage of coil B  is %d\r\n", Coil_Volt_B);
    Coil_Volt_C = NSD8381drv_ReadcoilBEMF(MCVC);
    printf("voltage of coil C  is %d\r\n", Coil_Volt_C);
    Coil_Volt_D = NSD8381drv_ReadcoilBEMF(MCVD);
    printf("voltage of coil D  is %d\r\n", Coil_Volt_D);
    /* Last coil BEMF voltage conversion store register
     * 00:CVA
     * 01:CVB
     * 10:CVC
     * 11:CVD
     * */
    if(NSD8381_ReadCVLUR() == 0x00)
    {
        Latest_Coil_Volt = Coil_Volt_A;
        printf("Latest voltage of coil is CVA:%d\r\n", Latest_Coil_Volt);
        Float_Coil_volt = ((float)Latest_Coil_Volt/1023)*28;
        printf("latest real voltage of coil is:%f V\r\n", Float_Coil_volt);
    }

}
else if(Phase_Count == 16)
{
    Coil_Volt_A = NSD8381drv_ReadcoilBEMF(MCVA);
    printf("voltage of coil A  is %d\r\n", Coil_Volt_A);
    Coil_Volt_B = NSD8381drv_ReadcoilBEMF(MCVB);
    printf("voltage of coil B  is %d\r\n", Coil_Volt_B);
    Coil_Volt_C = NSD8381drv_ReadcoilBEMF(MCVC);
    printf("voltage of coil C  is %d\r\n", Coil_Volt_C);
    Coil_Volt_D = NSD8381drv_ReadcoilBEMF(MCVD);
    printf("voltage of coil D  is %d\r\n", Coil_Volt_D);
    /* Last coil BEMF voltage conversion store register
     * 00:CVA
     * 01:CVB
     * 10:CVC
     * 11:CVD
     * */
    if(NSD8381_ReadCVLUR() == 0x01)
    {
        Latest_Coil_Volt = Coil_Volt_B;
        printf("Latest voltage of coil is CVB:%d\r\n", Latest_Coil_Volt);
        Float_Coil_volt = ((float)Latest_Coil_Volt/1023)*28;
        printf("latest real voltage of coil is:%f V\r\n", Float_Coil_volt);
    }
}
else if(Phase_Count == 32)
{
    Coil_Volt_A = NSD8381drv_ReadcoilBEMF(MCVA);
    printf("voltage of coil A  is %d\r\n", Coil_Volt_A);
    Coil_Volt_B = NSD8381drv_ReadcoilBEMF(MCVB);
    printf("voltage of coil B  is %d\r\n", Coil_Volt_B);
    Coil_Volt_C = NSD8381drv_ReadcoilBEMF(MCVC);
    printf("voltage of coil C  is %d\r\n", Coil_Volt_C);
    Coil_Volt_D = NSD8381drv_ReadcoilBEMF(MCVD);
    printf("voltage of coil D  is %d\r\n", Coil_Volt_D);
    /* Last coil BEMF voltage conversion store register
     * 00:CVA
     * 01:CVB
     * 10:CVC
     * 11:CVD
     * */
    if(NSD8381_ReadCVLUR() == 0x02)
    {
        Latest_Coil_Volt = Coil_Volt_C;
        printf("Latest voltage of coil is CVC:%d\r\n", Latest_Coil_Volt);
        Float_Coil_volt = ((float)Latest_Coil_Volt/1023)*28;
        printf("latest real voltage of coil is:%f V\r\n", Float_Coil_volt);
    }
}
else if(Phase_Count == 48)
{
    Coil_Volt_A = NSD8381drv_ReadcoilBEMF(MCVA);
    printf("voltage of coil A  is %d\r\n", Coil_Volt_A);
    Coil_Volt_B = NSD8381drv_ReadcoilBEMF(MCVB);
    printf("voltage of coil B  is %d\r\n", Coil_Volt_B);
    Coil_Volt_C = NSD8381drv_ReadcoilBEMF(MCVC);
    printf("voltage of coil C  is %d\r\n", Coil_Volt_C);
    Coil_Volt_D = NSD8381drv_ReadcoilBEMF(MCVD);
    printf("voltage of coil D  is %d\r\n", Coil_Volt_D);
    /* Last coil BEMF voltage conversion store register
     * 00:CVA
     * 01:CVB
     * 10:CVC
     * 11:CVD
     * */
    if(NSD8381_ReadCVLUR() == 0x03)
    {
        Latest_Coil_Volt = Coil_Volt_D;
        printf("Latest voltage of coil is CVD:%d\r\n", Latest_Coil_Volt);
        Float_Coil_volt = ((float)Latest_Coil_Volt/1023)*28;
        printf("latest real voltage of coil is:%f V\r\n", Float_Coil_volt);
    }
}

3.2.3 回读正常运行和堵转时的反电动势

  1. 使用串口查看变量的变化趋势比较困难,笔者增加了FreeMaster工程方便查看,如下图所示。

Freemaster界面

关于Freemaster的使用,可以参考如下文章:

  1. 从上图中可以看出,正常运行时回读到的反电动势电压在0.55V到0.6V之间,和示波器抓取到的数值(0.2V)有些差异,这里以芯片回读值为准。同时可以看到手动堵转时的反电动势仍有0.2V左右,主要是手指无法让电机完全停止转动。

  2. 基于上图得到的数据,我们将CVLLA和CVLLB都设置为0x0A,对应的电压在0.27V左右,处于0.2V和0.5V之间。CVUL采用默认值0x3FF,对应电压28V。对应代码配置如下:

堵转阈值设置

  1. 在主循环中增加对STA_1寄存器的STALL bit读取,用于判断是否发生堵转事件,若发生则关闭PWM波。

STALL标志读取

  1. 同时也在按键SW2的触发功能中增加清除错误状态。

SW2触发功能

4.测试情况

4.1 堵转后不关闭PWM波

堵转后不关闭PWM波,对应的FreeMaster界面动图如下。可以看到手动堵转后,过零点的反电动势明细下降很多。
Freemaster界面

4.2 堵转后关闭PWM波

堵转后关闭PWM波,对应的FreeMaster界面动图如下。当手动堵转后,NSD8381的STA_1寄存器对应的STALL bit(下图底部的变量Stall_Flag)被置位,电机停止运行。
Freemaster界面(增加堵转)

4.3 其他影响因素

实际测试发现,NSD8381的供电电压、电机的温度、电机运行方向对获取的反电动势值都有影响。

在实际项目应用时,需要结合产品的工作环境,模拟多种环境去测试电机正常运行时和堵转时的反电动势,设置合适的CVLLA、CVLLB、CVUL。


如果觉得本文对你有用,帮忙给个一键三连!!!

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Auto FAE进阶之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值