如何理解 Nyquist 采样定理?
我们可以用一个旋转轮来形象理解这个定理,
这是一个各个轴之间间隔45度的轮子,每个轮子都被标上了标识。
假设这个轮子以每秒45度来转动,那么每个轴返回原位需要8秒(采样周期)。
那么如果我们每8,16,24秒来用相机拍照,是不是每次都可以拍摄到原图像静止不动?
这是因为在采样周期内,车轮旋转的整数周期都会回到原位,不论旋转方向如何。那么就有了一个非常重要的结论:
采样周期的整数倍不能检测到相位(状态)变化。
我们来减少一点拍摄周期,如果以每4秒的速度拍摄呢?
每4秒拍照一次,轮子只能转一半,那么我们可以在照片中检测到轮子正在旋转,虽然依然不能区分。
它的旋转方向,但是轮子的状态(相位)已经可以区分了。
那么再减少一点拍摄周期,以每3秒的速度拍摄呢?
这就是Nyquist-Shannon采样定理,我们希望同时看到轮子的旋转和相位变化,采样周期要小于整
数周期的1/2,采样频率应该大于原始频率的2倍。同理,对于模拟信号,我们希望同时看到信号
的各种特性,采样频率应该大于原始模拟信号的最大频率的两倍,否则将发生混叠(相位/频率模糊)。
你想象一个白色的圆盘,有一条沿着半径的黑线,圆盘以角速度ω\omega 旋转。
你以一定的周期拍照,就是采样。
你拍照的频率恰好为圆盘自转频率两倍的时候,你的照片里黑线的位置,永远是下一张和上一张呈180度,看不出圆盘原来到底是顺时针转的还是逆时针转的。
作者:白如冰
链接:https://www.zhihu.com/question/24490634/answer/76129121
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
直观的证明很简单,汽车的轮子就是一个,你产生车轮倒转的错觉的时候,说明你眼睛的采样频率过低从而得出了错误结论