CF Round #815 (Div. 2) C

题意:

给一个n行m列的只由01组成的矩阵,每次选择一个L形的区域。方向不限,必须包含至少一个1,将此区域内全部置为0,问将整个区域置为0最多需要多少次操作。

思路:

如果整个矩阵没0,则答案是1的个数(下称为num)-2;

若存在连续的0(只相邻的8个单位格内任意一个还有0),则为num;

若只存在蛋单个零散0,则为num-1;

证明很简单,自己去试一下就知道,如果存在连续0,则一定可以一个一个的消掉1。后续结论都是基于此推出来的。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const int inf=1e9+9;
const ll INF=1e18l;
/*
priority_queue<int> big_heep;                 
priority_queue<int,vector<int>,greater<int> > small_heep;       
struct cmp{//if return true,it means that the number in the left was smaller than the right one
	    bool  operator ()  (int  a,int  b){
	   } 
};  
 */
int a[1005][1005];
void work(){
	int n,m;
	cin>>n>>m;
	int num=0;
	for (int i=1;i<=n;i++){
		for (int j=1;j<=m;j++){
			char c;
			cin>>c;
			if (c=='0') a[i][j]=0;
			if (c=='1') a[i][j]=1;
			if (a[i][j]==1) num++;
		}
	}
	bool check=true;
	for (int i=1;i<=n;i++){
		for (int j=1;j<=m;j++){
			if (a[i][j]==0){
				check=false;
				if (((i-1>=1) and a[i-1][j]==0) or ((i+1<=n) and a[i+1][j]==0) or 
				((j+1<=m) and a[i][j+1]==0) or ((j-1>=1) and a[i][j-1]==0) or 
				((i+1<=n) and (j+1<=m) and a[i+1][j+1]==0) or (i-1>=1 and j-1>=1 and a[i-1][j-1]==0)
				or (i-1>=1 and j+1<=m and a[i-1][j+1]==0) or (i+1<=n and j-1>=1 and a[i+1][j-1]==0)){
					cout<<num<<"\n";
					return;
				}
			}
		}
	}
	if (check) cout<<num-2<<"\n";
	else cout<<num-1<<"\n";
	return;
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	ll t;
	cin>>t;
	while (t--){
		
		work();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值