1043 幸运号码
- 1 秒
- 131,072 KB
- 20 分
- 3 级题
1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。
例如:99、1230、123312是幸运号码。
给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。
收起
输入
输入N(1<= N <= 1000)
输出
输出幸运号码的数量 Mod 10^9 + 7
输入样例
1
输出样例
9
#include<set>
#include<map>
#include<list>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<bitset>
#include<iomanip>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define eps (1e-8)
#define MAX 0x3f3f3f3f
#define u_max 1844674407370955161
#define l_max 9223372036854775807
#define i_max 2147483647
#define re register
#define pushup() tree[rt]=tree[rt<<1]+tree[rt<<1|1]
#define nth(k,n) nth_element(a,a+k,a+n); // 将 第K大的放在k位
#define ko() for(int i=2;i<=n;i++) s=(s+k)%i // 约瑟夫
#define ok() v.erase(unique(v.begin(),v.end()),v.end()) // 排序,离散化
#define Catalan C(2n,n)-C(2n,n-1) (1,2,5,14,42,132,429...) // 卡特兰数
using namespace std;
inline int read(){
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' & c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
typedef long long ll;
const double pi = atan(1.)*4.;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fLL;
const int M=63;
const int N=1e5+5;
ll mod=1e9+7;
int n;
ll dp[1005][9045]; // dp[i][j] 表示 前 i 位和为 j 的个数
int main(){
scanf("%d",&n);
memset(dp,0,sizeof(dp));
for(int i=0;i<=9;i++) dp[1][i]=1; // 第 1 位和为 i 的只有一个(1.....9)
for(int i=2;i<=n;i++){
for(int j=0;j<=9*i;j++){
for(int k=0;k<=9;k++){
dp[i][j]=(dp[i][j]+dp[i-1][j-k])%mod;
// 第 i 位的和可以由第 i-1 位+(0 / 1 / 2 / 3 /.... 9) 组成
}
}
}
// 结果易得: ans + dp[n][i]*dp[n][i] (i -> 0 ..... 9*n(和的最大值))
// 要注意的是:不能出现前导0,意味着要减去 dp[n-1][i]
ll ans=0;
for(int i=1;i<=9*n;i++)
ans=(ans+(dp[n][i]-dp[n-1][i])*dp[n][i]%mod)%mod;
printf("%lld\n",ans);
return 0;
}