Given an R×C grid with each cell containing an integer, find the number of subrectangles in this grid that contain only one distinct integer; this means every cell in a subrectangle contains the same integer.
A subrectangle is defined by two cells: the top left cell (r1, c1), and the bottom-right cell (r2, c2) (1 ≤ r1 ≤ r2 ≤ R) (1 ≤ c1 ≤ c2 ≤ C), assuming that rows are numbered from top to bottom and columns are numbered from left to right.
The first line of input contains a single integer T, the number of test cases.
The first line of each test case contains two integers R and C (1 ≤ R, C ≤ 1000), the number of rows and the number of columns of the grid, respectively.
Each of the next R lines contains C integers between 1 and 109, representing the values in the row.
For each test case, print the answer on a single line.
1 3 3 3 3 1 3 3 1 2 2 5
16
题意:求有多少子矩阵 元素是唯一的
题解:枚举矩阵的右下角 用单调栈维护左上角可能的点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<deque>
using namespace std;
typedef long long ll;
int a[1005][1005],up[1005][1005];
deque<int>sp;
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,m,i,j,k;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%d",&a[i][j]);
up[i][j]=(a[i][j]==a[i-1][j])?up[i-1][j]:i;
}
}
ll ans=0,sum;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
int p=i-up[i][j]+1;
if(a[i][j]!=a[i][j-1]){
while(!sp.empty())sp.pop_front();
sum=0;
sp.push_back(p);
sum+=p;
ans+=sum;
}
else{
int now=0;
while(!sp.empty()&&sp.back()>p){
now++;
sum-=sp.back();
sp.pop_back();
}
for(k=1;k<=now+1;k++){
sum+=p;
sp.push_back(p);
}
ans+=sum;
}
}
}
printf("%lld\n",ans);
}
return 0;
}