- 博客(8)
- 收藏
- 关注
原创 第7课 求解Ax=0:主变量、特解
第7课 求解Ax=0:主变量、特解求解AX=0的步骤对于矩阵A=[1222 2468 36810]A=\begin{bmatrix} 1&2&2&2\ 2&4&6&8\ 3&6&8&10 \end{bmatrix},求解AX=0。很明显这个矩阵的第三行不是线性无关的,它是第一行和第二行的和。首先进行消元其中红色标记的为主元。 ⎡⎣⎢⎢1232462682810⎤⎦⎥⎥−→−−−−−
2016-10-08 16:31:48
2252
原创 第6课 列空间和零向量
第6课 列空间和零向量子空间两个子空间的并集,不一定是一个子空间。两个子空间的交集,一定是一个子空间。举例,R3R^3中的两个子空间,过[0\0\0]\begin{bmatrix} 0\0\0 \end{bmatrix}的平面P和过⎡⎣⎢⎢000⎤⎦⎥⎥\begin{bmatrix}0\\0\\0\end{bmatrix}的直线L(L和P交于原点)。问题1: P⋃L P \bigcup
2016-10-08 16:31:24
1302
原创 第5课 转置,置换,向量空间R
第5课 转置,置换,向量空间R置换 Permutation对于A= LU 来说,L是 L=⎡⎣⎢⎢⎢⎢⎢1???..01??..001?..0001............⎤⎦⎥⎥⎥⎥⎥L= \begin{bmatrix}1&0&0&0&..\\?&1&0&0&..\\?&?&1&0&..\\?&?&?&1&..\\..&..&..&..&..\end{bmatrix} 是一个
2016-10-08 16:30:26
1084
原创 第4课矩阵的LU分解
第4课矩阵的LU分解逆矩阵的一些性质设A和B都是可逆矩阵(AB)−1=B−1A−1(AB)^{-1} = B^{-1}A^{-1}(A−1)TA−1=I(A^{-1})^{T}A^{-1}=ILU分解设A是一个可逆矩阵,经过变换后得到最终的上三角矩阵,则称这个最张的矩阵叫作U。经过的这些变换之积的逆记作L,有A=LU。假如A=[2817] \begin{bmatrix}2&1\\8&7\e
2016-10-08 16:29:44
2488
原创 第3课 乘法和逆矩阵
第3课 乘法和逆矩阵矩阵的乘法的第一种解释思考一个矩阵的乘法AB=C⎡⎣⎢⎢⎢⎢⎢⎢⎢row1row2row3row4..rown........................⎤⎦⎥⎥⎥⎥⎥⎥⎥⎡⎣⎢⎢column1....column2....column3....column4..........columnn....⎤⎦⎥⎥=C \begin{bmatrix}row1&..&.. \\r
2016-10-08 16:27:58
474
原创 第2课 矩阵消元
第2课 矩阵消元Elimination 消元法。⎧⎩⎨⎪⎪x+2y+z=23x+8y+z=124y+z=2 \begin{cases}x+2y+z=2 \\ 3x+8y+z =12\\4y+z=2\end{cases}A=130284111 A=\begin{matrix}1&2&1 \\3&8&1 \\0&4&1\end{matrix}消元法从第一行的第一个元素开始,称之为第一
2016-10-08 16:26:16
766
原创 第1课 方程组的几何解释
第一课 方程组的几何解释对于方程组{2x−y=0−x+2y=3 \begin{cases}2x-y=0 \\ -x+2y=3\end{cases}Row Picture & Column Picture而行图像(Row Picture)就是下面这个图中所示的两直线相交。它的列图像(Column Picture)就像下面的 AX=b 这样的形式 [2−1−12][xy]=[03] \begi
2016-10-08 16:06:16
630
原创 MIT线性代数公开课
视频地址 http://open.163.com/special/opencourse/daishu.html习题课地址 http://open.163.com/special/opencourse/mitxianxingdaishuxitike.html
2016-09-27 09:27:35
1029
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人