第5课 转置,置换,向量空间R

第5课 转置,置换,向量空间R

置换 Permutation

对于A= LU 来说,L是
L=1???..01??..001?..0001............ 是一个下三解矩阵,而U是经过消元后变成一个上三解矩阵
U=1000..?100..??1?..???1............

然而现实情况是,我们总会碰到主元是0的情况,那这样就需要行变换,即交换两行或多行,这称之为置换 Permutation。

这种变成了 PA=LU ,它先把A通过置换变成比较好的行序,然后再进行LU变换。

Permutations(置换矩阵)是单位矩阵经过重新行排序后的矩阵。对于一个N阶方阵,它的个数为 n!=n(n1)...(3)(2)(1) ,这一类矩阵都有很好的性质,比如都存在逆矩阵,且其逆矩阵和其转置相等,即 PPT=I,P1=PT

转置 Transfrom

假设有矩阵 [13 23 41]T=[132341]

如果用数学公式表达转置即 (AT)ij=Aji

还有一种对称矩阵(Symmetric Matrix),其转置等于本身。 AT=A
比如 [317 139 794] 就是一个对称矩阵。

RTR is always symmetric. 任何矩阵的转置乘以其本身,是一个对称矩阵。比如:

124331T[132341]=1011711131171117

下面证明一下为什么?

(RTR)T=RT(RT)T=RTR ,所以 RTR 是一个对称矩阵。

向量空间 Vector Spaces

Examples : R2 是所有二维向量组成的空间,它就是一个二维平面。

子空间

它们具有封闭性,即向量之和,数乘,任意线性组合,都还在子空间中。
任合子空间必须有零向量。

举例:

比如对于坐标平面中的第一象限,它就不是一个向量空间。向量之和还在第一象限,但如果是任何负数乘以子向量,它就不闭合了。

我们还从二维向量空间出发,任何一个穿过原点的直线,是一个子空间。但不穿过原点 [00] 的直线,不是子空间。

列举一下 R2 的所有子空间:

  • 它自己是自己的子空间

  • 所有经过 [00] 的直线是子空间

  • [00] 自己是子空间

列举一下 R3 的所有子空间:

  • 它自己是自己的子空间

  • 所有经过 000 的平面是子空间

  • 所有经过 000 的直线是子空间

  • 000 自己是子空间

矩阵列空间

举例对于矩阵
A=[13 23 41]
它所有的列向量都在 R3 中。

它们所有的线性组合构成一个子空间,我们称之为列空间,记作C(A) column of A

想像一下,几何上,这个列空间其实是一个由两条向量通过线性组合充满的平面。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值