第3课 乘法和逆矩阵

第3课 乘法和逆矩阵

矩阵的乘法的第一种解释

思考一个矩阵的乘法

AB=C

row1row2row3row4..rown........................column1....column2....column3....column4..........columnn....=C

想像一下 C34 (第3行第4列的那个元素)等于什么?
C34=(row3 of A)·(column4 of B)=a31b14+a32b24+...+a3nbn4=k=1na3kbk4

那么什么样的矩阵才能相乘呢?不一定是方阵
如果A是一个 m×n 的矩阵,B是一个 n×p 的矩阵,那么AB就可以做乘法。其结果是一个 m×p 的矩阵。

第二、三种矩阵乘法的解释

用上式的结果将C矩阵补全如下:

k=1na1kbk1k=1na2kbk1..k=1namkbk1k=1na1kbk2k=1na2kbk2..k=1namkbk2k=1na1kbk3k=1na2kbk3..k=1namkbk3

C中的每一列可以看作是都是A中所有列向量的一种线性组合。

A1 记作A矩阵的第一列和列向量, C1 记作C矩阵的第一行的行向量:

A1=a11a21..am1,A2=a12a22..am2...An=a1na2n..amn

B1=b11b21..bn1

C的第1列 C1

C1=AB1=[A1A2..An]b11b21..bn1=

b11a11a21..am1+b21a12a22..am2...+bn1a1na2n..amn=k=1na1kbk1k=1na2kbk1..k=1namkbk1

C中的每一行都是B中所有行向量的一种线性组合。类似的

B1=[b11b12b13]

B2=[b21b22b23]

...

Bn=[bn1bn2bn3]

A1=[a11a12..a1n]

记C的第1行为 C1

C1=a11[b11b12b13]

+a12[b21b22b23]

...+a1n[bn1bn2bn3]

=[k=1na1kbk1k=1na1kbk2k=1na1kbk3]

第四种矩阵乘法的解释:列乘以行

如果是(column of A) × (row of B),假设A是一个m × 1,B是1 × p的矩阵。则结果将是一个m × p的矩阵。

234[16]=234121824

我们总结如下:
AB = Sum of (( cols of A) × (rows of B))

234789[1060]=234[16]+789[00]=234121824

第五种矩阵乘法的解释:分块矩阵 (Bolck Multiplication)

将A分成四块:
A= [A1A2 A3A4]

将B也分成四块:
B= [B1B2 B3B4]

AB=[A1A3A2A4][B1B3B2B4]=[A1B1+A2B3A3B1+A4B3A1B2+A2B4A3B2+A4B4]

逆 Inverse

先讨论方阵(square matrix)。
A1A=I 。这里不予证明,如果方阵A的左逆存在( A1A=I ),那它的右逆( AA1=I )也存在,且右逆等于左逆。
这种矩阵称为可逆的(Invertible)或非奇异的(non-singular)。

下面讨论奇异的情况,不可逆(No inverse)。下面这个 2×2 的矩阵没有逆矩阵。

A=[1236]

考虑为什么A不可能有逆矩阵。

逆矩阵的第一种解释

如果存在 AA1=I ,那么 I 中的每一列都来自于A中所有列的线性组合。而I的两列分别 [12] [36] ,它不可能组合出 I 中的第一列[10] 因为,它俩共线。

逆矩阵的第二种解释

如果存在一个非0向量X,使的 AX=0 ,那么A就是不可逆的。

证明很简单,反证法。如果存在,则 A1AX=0A1 ,那么X=0。与假设矛盾。

如上例

AX=[1236][31]=[00]

矩阵逆的求解

A=[13 27] ,我们该如何才能找到 A1

假设 A1=[ac bd]

则,用列相乘的思路来解 A1

{1a+3b=12a+7b=0

{1c+3d=02c+7d=1

另一种解法叫Gauss-Jordan Elimnition(他可以同时解两个方程)。

[1237][ab]=[10]

另一个是
[1237][cd]=[01]

Gauss-Jordan消元法则是一起来。两式的增广矩阵合起来。

[12371001]

然后利用高斯法进行消元,左侧矩阵变为 I ,则右侧矩阵就是我们想要的A1

[1310 2701][10311201][10017231]

A1=[73 21] 就是我们想求的逆矩阵。

为什么这么做可以求得 A1 呢?

回想一下第二课Matrices中关于初等行变换与矩阵左乘的关系。

上面的增广矩阵的每一步初等行变换都可以看作是左乘了一个E,那么经过N次初等行变换后的N个 EX 乘起来,可以得到一个E。

相当于是
E[AI]=[IX]

这其中 EA=I EI=X ,则可以立即得到 E=A1,X=A1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值