线性代数学习笔记3

第五集  向量空间
我们可以对向量进行所谓“线性运算”,即通过加和(v+w)与数乘运算(3v)得到向量的线性组合。向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内。
包含于向量空间之内的一个向量空间称为原向量空间的一个子空间
R2 中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0 的到的零向量必须处于子空间中。
R2 的子空间包括:
  • R2 空间本身
  • 过原点的一条直线(这是 R2 空间中的一条直线,与 R1 空间有区别)
  • 原点 仅包含0 向量
R3 的子空间包括:
  • R3 空间本身 3 维
  • 过原点的一个平面 2 维
  • 过原点的一条直线 1 维
  • 原点 仅包含0 向量

第六集  列空间和零空间  
列空间
矩阵A 的列空间C(A)是其列向量的所有线性组合所构成的空间。
求解Ax=b 的问题,对于给定的矩阵A,对于任意的b 都能得到解么?
A
矩阵A 列向量的线性组合无法充满 R4 ,因此如果b不能被表示为A 列向量的线性组合时,方程是无解的。只有当b 在矩阵A 列空间C(A)里时,x 才有解。
而且,由于列向量不是线性无关的(第三个列向量为前两个列向量之和),所以尽管有3 个列向量,但是只有2 个对张成向量空间有贡献。矩阵A 的列空间为 R4 内的一个二维子空间。

零空间
矩阵A 的零空间N(A)是指满足Ax=0 的所有解的集合。x 为含有3 个分量的向量,故矩阵A 的零空间是 R3 的子空间。对于m*n 矩阵,列空间为 Rm 的子空间,零空间为 Rn 空间的子空间。
若方程变为
这里写图片描述
则其解集不能构成一个子空间。零向量并不在这个集合内。

对于列空间,它是由列向量进行线性组合张成的空间;而零空间是从方程组出发,通过让x 满足特定条件而得到的子空间。

第七集  求解Ax=0:主变量,特解
计算零空间,矩阵A 的零空间即满足Ax=0 的所有x构成的向量空间。
这里写图片描述
对于矩阵A 进行“行操作”并不会改变Ax=b 的解,因此也不会改变零空间(但是会改变列空间)。消元得到
这里写图片描述
矩阵U 为梯形矩阵。其第三行变为零,是因为第三行的行向量本身就是第一行和第二行行向量的线性组合。矩阵的秩r就是矩阵的主元的个数,表示只有r个方程起作用。
当我们将系数矩阵变换为上三角阵U 时,就可以用回代求得方程Ux=0 的解。
本例中,包含主元的矩阵第1 列和第3 列为主元列,而不包含主元的第2 列和第4列为自由列。对自由变量 x2 x4 我们可以进行赋值。例如令 x2 =1,而 x4 =0,可得一解,这里写图片描述。取自由变量中 x2 =0 而 x4 =1,则可得到另一解,这里写图片描述
矩阵A 的零空间就是这些“特解”向量的线性组合所构成的向量空间 x=C1[2,1,0,0]T+C2[2,

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值