欧拉回路练习题,顺便整理一下判断欧拉回路(欧拉图)和欧拉通路(半欧拉图)的条件。
1. 欧拉回路(欧拉图)
无向图存在欧拉回路的充要条件:一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
有向图存在欧拉回路的充要条件:一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
2. 欧拉通路(半欧拉图):
无向图存在欧拉通路的充要条件:一个无向图存在欧拉通路,当且仅当只有两个节点的度数为奇数(即开始点和结束点)。
有向图存在欧拉通路的充要条件:一个有向图存在欧拉通路,除两个节点(开始点和结束点)外,其它节点的入度等于出度,开始点的出度比入度大1,结束点的入度比出度大1。
回到这道题
题目大意:题目意思很明白,就不多说了。附链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878。
大体思路:创建一个记录各个节点度数的数组 a[1005],用并查集判断是否是连通图。
以下是ac代码:
#include<iostream>
#include<cstring>
#include<stdio.h>
using namespace std;
int a[1005];
int fa[1005];
int getfa(int x){
if(fa[x]==x)
return x;
else
return fa[x]=getfa(fa[x]);
}
int main(){
int n,m;
while(cin>>n){
if(!n)
break;
cin>>m;
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
fa[i]=i;
int x,y;
for(int i=0;i<m;i++){
cin>>x>>y;
a[x]++;
a[y]++;
x=getfa(x);
y=getfa(y);
fa[x]=y;
}
int i;
for(i=1;i<=n;i++)
if(a[i]%2||getfa(i)!=fa[1])
break;
if(i<n)
cout<<0<<endl;
else
cout<<1<<endl;
}
return 0;
}