hdu-1878(欧拉回路)

本文介绍了无向图和有向图中欧拉回路及欧拉通路的判断条件,并通过一道具体题目展示了如何使用数组记录节点度数和并查集判断连通性的方法来解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉回路练习题,顺便整理一下判断欧拉回路(欧拉图)和欧拉通路(半欧拉图)的条件。

1. 欧拉回路(欧拉图)

无向图存在欧拉回路的充要条件:一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。

有向图存在欧拉回路的充要条件:一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。

2. 欧拉通路(半欧拉图):

无向图存在欧拉通路的充要条件:一个无向图存在欧拉通路,当且仅当只有两个节点的度数为奇数(即开始点和结束点)。

有向图存在欧拉通路的充要条件:一个有向图存在欧拉通路,除两个节点(开始点和结束点)外,其它节点的入度等于出度,开始点的出度比入度大1,结束点的入度比出度大1。

回到这道题

题目大意:题目意思很明白,就不多说了。附链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878

大体思路:创建一个记录各个节点度数的数组 a[1005],用并查集判断是否是连通图。

以下是ac代码:

#include<iostream>
#include<cstring>
#include<stdio.h>
using namespace std;
int a[1005];
int fa[1005];

int getfa(int x){
    if(fa[x]==x)
        return x;
    else
        return fa[x]=getfa(fa[x]);
}
int main(){
    int n,m;
    while(cin>>n){
        if(!n)
            break;
        cin>>m;
        memset(a,0,sizeof(a));
        for(int i=1;i<=n;i++)
            fa[i]=i;
        int x,y;
        for(int i=0;i<m;i++){
            cin>>x>>y;
            a[x]++;
            a[y]++;
            x=getfa(x);
            y=getfa(y);
            fa[x]=y;
        }
        int i;
        for(i=1;i<=n;i++)
            if(a[i]%2||getfa(i)!=fa[1])
                break;
        if(i<n)
            cout<<0<<endl;
        else
            cout<<1<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值