自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1113)
  • 收藏
  • 关注

原创 异步事件处理是将事件驱动模型与异步编程结合的一种技术,允许程序在响应事件时执行非阻塞操作,特别适合需要高响应性和并发性的场景,例如工业自动化、UI 交互或网络通信

在提供的代码(IAction 接口、RecipeProcessor 类和 btnReadPoint_Click 事件处理程序)中,异步事件处理通过 C# 的 async/await、Task、CancellationToken 和回调委托(如 OnDataLoadedHandler)实现,结合 WinForms 的事件驱动机制。一、异步事件处理概述异步事件处理的核心是将事件处理程序设计为异步操作,允许在处理事件时执行耗时任务(如 I/O 操作、PLC 通信)而不阻塞调用线程。二、代码中的异步事件处理实现。

2025-08-20 07:31:34 256

原创 学习 ROS(Robot Operating System)是从基础到熟练掌握的关键在于系统化的学习路径、实践驱动的方法和对机器人开发生态的深入理解

8. 总结学习 ROS 从基础到熟练需要掌握核心概念(节点、话题、服务)、核心功能(导航、SLAM、MoveIt)和 AI 集成(视觉、强化学习)。建议从简单任务(如乌龟仿真)开始,逐步过渡到复杂项目(如多机器人协作),并利用仿真工具(Gazebo)和社区资源加速学习。学习 ROS(Robot Operating System)是从基础到熟练掌握的关键在于系统化的学习路径、实践驱动的方法和对机器人开发生态的深入理解。4. 熟练掌握:项目驱动与开源贡献目标:通过复杂项目和社区参与,精通 ROS 开发和优化。

2025-08-20 07:31:19 621

原创 异步回调机制是异步编程中用于在异步操作完成或发生特定事件时通知调用者的一种模式。在提供的代码(IAction 接口、RecipeProcessor 类和 btnReadPoint_Click 事件处理

七、总结异步回调机制在提供的代码中通过 RecipeProcessor 的回调委托(OnDataLoadedHandler、OnProgressHandler、OnCompletedHandler)和 btnReadPoint_Click 的异步任务实现,结合 IAction 的事件(OnLog)支持非阻塞的事件通知。一、异步回调机制概述异步回调机制允许异步操作在完成时通过回调函数(通常是委托)通知调用者,传递操作结果、进度或状态。二、代码中的异步回调机制。四、异步回调机制的优势。

2025-08-20 06:57:47 311

原创 群体智能(Swarm Intelligence, SI)算法是一类受自然界群体行为启发的优化和协作算法,广泛应用于多机器人协作、任务分配和路径规划

以下是对群体智能算法的详细解析,聚焦其在多机器人协作中的应用,涵盖核心算法、ROS 集成、代码示例及注释,以及挑战和优化方向。2. 群体智能算法在多机器人协作中的作用在多机器人系统中,群体智能算法通过分布式计算和局部通信实现协作,结合 ROS 的通信框架和 AI 的感知能力,能够高效解决复杂任务。3. 核心群体智能算法以下是多机器人协作中常用的群体智能算法,重点介绍 PSO 和 ACO,并提供 ROS 集成的代码实现。应用:多机器人搜索目标(如救援任务中的幸存者)。应用:多机器人路径规划或任务分配。

2025-08-20 06:57:30 284

原创 人工智能(AI)在机器人中的应用极大提升了机器人的自主性、适应性和智能化水平,使其能够在复杂环境中执行多样化任务

总结人工智能在机器人中的应用涵盖感知、导航、决策、交互、控制和学习等多个方面,极大地扩展了机器人的能力范围。未来,随着边缘计算、多模态AI和自主学习技术的进步,机器人将变得更加智能和普及。人工智能(AI)在机器人中的应用极大提升了机器人的自主性、适应性和智能化水平,使其能够在复杂环境中执行多样化任务。1. 环境感知与理解AI技术使机器人能够通过传感器数据理解周围环境,模拟人类的感知能力。5. 运动控制与操作AI优化机器人的运动精度和适应性,特别是在复杂任务中。

2025-08-20 06:57:15 292

原创 异步回调机制是异步编程中的一种核心模式,用于在异步操作完成或发生特定事件时通知调用者,传递操作结果、进度或状态

在您提供的代码(IAction 接口、RecipeProcessor 类和 btnReadPoint_Click 事件处理程序)中,异步回调机制主要通过 C# 的委托(delegate)和事件(event)实现,结合 async/await 和 WinForms 的事件驱动模型,用于处理 PLC 通信、文件操作和 UI 更新等场景。异步回调机制是异步编程中的一种核心模式,用于在异步操作完成或发生特定事件时通知调用者,传递操作结果、进度或状态。二、代码中的异步回调机制实现。三、异步回调机制的实现细节。

2025-08-20 06:56:46 371

原创 发布-订阅模式(Publish-Subscribe Pattern)是一种典型的事件驱动设计模式,广泛应用于松耦合系统,允许事件生产者(发布者)与事件消费者(订阅者)通过事件总线或中介者进行异步通信

在提供的代码(IAction 接口、RecipeProcessor 类和 btnReadPoint_Click 事件处理程序)中,发布-订阅模式通过 C# 的 事件(event) 和 委托(delegate) 机制实现,结合异步编程(async/await)和 WinForms 事件循环,形成了高效的异步事件处理机制。本文将详细解析代码中的发布-订阅模式,分析其实现、与事件驱动架构的结合、优势与挑战,以及优化建议。二、代码中的发布-订阅模式实现。三、发布-订阅模式的机制与优势。一、发布-订阅模式概述。

2025-08-20 06:56:34 508

原创 并发编程模型是处理多个任务同时执行的一种编程范式,广泛应用于需要高性能、响应性和资源利用率的场景

在提供的 C# 代码中(RecipeProcessor 类和 btnReadPoint_Click 事件处理程序),并发编程主要通过 异步编程模型(Task-based Asynchronous Pattern, TAP) 实现,结合 async/await、Task、CancellationToken 和 IProgress<T> 等技术,用于处理 PLC 通信、文件操作和 UI 交互。本文将详细解析代码中的并发编程模型,重点分析其实现细节、并发特性、适用场景,以及潜在的并发问题和优化建议。

2025-08-20 06:52:16 338

原创 以下是对提供的 C# 代码的详细中文解析,代码主要涉及一个配方处理器(RecipeProcessor)类及其相关功能,以及一个按钮点击事件处理程序,用于处理配方数据的读取操作

七、总结RecipeProcessor 是一个功能完整的配方数据处理类,结合异步编程、PLC 通信和 CSV 文件操作,支持工业自动化中的配方管理需求。btnReadPoint_Click 事件处理程序通过调用 RecipeProcessor 的方法,提供用户友好的界面交互,显示进度并处理异常。以下是对提供的 C# 代码的详细中文解析,代码主要涉及一个配方处理器(RecipeProcessor)类及其相关功能,以及一个按钮点击事件处理程序,用于处理配方数据的读取操作。2. 代码详解csharp。

2025-08-20 06:52:05 309

原创 发布订阅模式(Publish-Subscribe Pattern,简称 Pub/Sub)是一种消息传递模式,广泛应用于事件驱动系统,用于实现组件间的松耦合通信

6. 总结发布订阅模式是一种强大的消息传递模式,通过消息代理实现发布者和订阅者的松耦合通信。结合您提供的 SNScanNGForm 代码和之前的讨论(回调机制和事件驱动设计),本文将深入解析发布订阅模式的原理、在 SNScanNGForm 中的潜在应用、与回调机制和事件驱动设计的对比,以及更广泛的应用场景和设计注意事项。发布订阅模式是一种设计模式,允许消息的发送者(发布者)和接收者(订阅者)通过中间的消息代理(Broker)或事件总线(Event Bus)进行通信,而无需直接耦合。

2025-08-20 06:51:43 342

原创 MVC(Model-View-Controller)架构是一种广泛使用的软件设计模式,旨在将应用程序的关注点分离为三个核心组件:模型(Model)、视图(View)和控制器(Controller)

相比回调机制(单一处理)、事件驱动设计(UI 绑定)、发布订阅模式(跨模块通信)和观察者模式(状态通知),MVC 更适合需要明确分离 UI 和业务逻辑的场景,如桌面应用和 Web 开发。结合您提供的 SNScanNGForm 代码(一个 Windows Forms 窗体)以及之前的讨论(回调机制、事件驱动设计、发布订阅模式、观察者模式),本文将深入探讨 MVC 架构的原理、在 SNScanNGForm 中的潜在应用、与其他模式的对比,以及更广泛的应用场景和设计注意事项。低(模型、视图、控制器分离)

2025-08-20 06:51:26 297

原创 观察者模式(Observer Pattern)是一种行为型设计模式,用于在对象之间建立一对多的依赖关系,当一个对象的状态发生变化时,所有依赖它的对象都会自动收到通知并更新

结合您提供的 SNScanNGForm 代码和之前的讨论(回调机制、事件驱动设计、发布订阅模式),本文将深入解析观察者模式的原理、在 SNScanNGForm 中的潜在应用、与发布订阅模式及其他机制的对比,以及更广泛的应用场景和设计注意事项。2. 观察者模式在 SNScanNGForm 中的潜在应用SNScanNGForm 当前使用 Windows Forms 的事件驱动机制和回调机制(Func<SNScanNGFormButton, string, bool>)处理按钮操作。

2025-08-20 06:50:56 412

原创 这段代码是一个 C# Windows Forms 窗体类 SNScanNGForm,用于处理扫描失败的交互界面

12. 总结SNScanNGForm 是一个功能完善的 Windows Forms 窗体,用于处理扫描失败的交互场景。1. 代码概述SNScanNGForm 是一个继承自 System.Windows.Forms.Form 的窗体类,用于处理扫描失败(NG,Not Good)的情况。这段代码是一个 C# Windows Forms 窗体类 SNScanNGForm,用于处理扫描失败的交互界面。4. 按钮事件处理窗体包含四个按钮的事件处理逻辑,分别对应“确定”、“取消”、“重新扫描”和“自动输入”操作。

2025-08-20 06:50:43 347

原创 切面编程(Aspect-Oriented Programming, AOP)是一种编程范式,旨在通过分离横切关注点(Cross-Cutting Concerns)来提高代码的模块化

横切关注点是指那些跨越多个模块的功能,例如日志记录、事务管理、权限控制、异常处理等,这些功能通常会分散在应用程序的多个地方,导致代码重复和维护困难。AOP通过将这些关注点从核心业务逻辑中分离出来,独立实现并动态织入(weave)到程序中,从而提高代码的可重用性和可维护性。如果你有具体问题(例如如何在特定框架中实现AOP、代码示例、性能优化等),可以进一步说明,我可以提供更详细的解答!Spring AOP 示例(Java)以下是一个使用Spring AOP实现日志记录的简单示例:java。

2025-08-20 06:50:24 442

原创 在算法研究过程中进行算法创新是推动人工智能、半导体行业以及其他技术领域发展的核心。结合前文讨论的AI大模型预训练与微调、Socket编程、AI芯片架构设计和神经网络优化

结合前文讨论的AI大模型预训练与微调、Socket编程、AI芯片架构设计和神经网络优化,本文将详细探讨在算法研究中实现创新的策略、方法和步骤,特别聚焦于半导体行业中的应用场景(如晶圆缺陷检测、工艺优化)。5. C++算法创新示例(结合AI芯片和Socket)以下是一个C++示例,模拟在AI芯片上运行创新的晶圆缺陷检测算法,通过Socket通信传输结果。1. 算法创新的背景与挑战算法创新的目标是开发更高效、准确或通用的算法,以解决特定问题或提升现有方法。4. 半导体行业中的算法创新案例。

2025-08-20 06:50:11 331

原创 ROS(Robot Operating System)与人工智能(AI)的融合是现代机器人技术发展的核心驱动力,结合了 ROS 的模块化、分布式框架与 AI 的强大感知、决策和学习能力,使机器人能够处

8. 总结ROS 与 AI 的融合通过模块化通信和强大算法结合,显著提升了机器人的智能化水平。ROS(Robot Operating System)与人工智能(AI)的融合是现代机器人技术发展的核心驱动力,结合了 ROS 的模块化、分布式框架与 AI 的强大感知、决策和学习能力,使机器人能够处理复杂任务、在动态环境中自主运行。1. ROS 与 AI 融合的核心方式ROS 提供了一个灵活的框架,用于管理机器人硬件、通信和控制,而 AI 算法增强了机器人的感知、决策和适应能力。4.3 NLP 与 ROS。

2025-08-19 07:01:42 468

原创 人工智能在机器人中的应用依赖多种计算机算法,这些算法涵盖感知、导航、决策、控制等核心功能

总结AI在机器人中的核心算法包括目标检测(YOLO)、路径规划(A*)、运动控制(PID)、强化学习(DQN)和SLAM(ORB-SLAM)。实际应用中,这些算法需结合硬件(如GPU、传感器)和软件框架(如ROS)优化,以满足实时性和鲁棒性需求。以下是对机器人中常用AI算法的详细解析,聚焦核心算法,附带关键代码示例(以Python为主,结合伪代码说明),并提供详细注释,力求全面且易于理解。人工智能在机器人中的应用依赖多种计算机算法,这些算法涵盖感知、导航、决策、控制等核心功能。4. 强化学习(RL)算法。

2025-08-19 07:01:30 689

原创 机器人操作系统(ROS,Robot Operating System)是一个灵活、模块化的软件框架,专为机器人开发设计,广泛应用于机器人系统的感知、决策、控制和通信

ROS 并非传统意义上的操作系统,而是一个中间件,提供标准化的工具、库和服务,简化机器人软件的开发、测试和部署。以下是对 ROS 的详细解析,涵盖其架构、功能、核心组件、实现机制以及在机器人开发中的应用,同时提供代码示例和详细注释。机器人操作系统(ROS,Robot Operating System)是一个灵活、模块化的软件框架,专为机器人开发设计,广泛应用于机器人系统的感知、决策、控制和通信。2. ROS 架构ROS 的架构基于分布式系统,核心组件包括节点、消息、话题、服务、参数服务器等。

2025-08-19 07:01:20 1107

原创 多机器人协作(Multi-Robot Collaboration)是机器人技术中的一个重要研究领域,结合 ROS(Robot Operating System)与 AI(人工智能)技术,可以实现多个机

ROS 的分布式通信(话题、服务、动作)和命名空间机制实现机器人间的数据共享和协调,AI 算法(如市场机制、CBS、PSO)优化任务分配和路径规划。多机器人协作(Multi-Robot Collaboration)是机器人技术中的一个重要研究领域,结合 ROS(Robot Operating System)与 AI(人工智能)技术,可以实现多个机器人协同完成复杂任务,如搜索救援、仓储物流、工业生产等。ROS 提供分布式通信框架,AI 增强感知、决策和协调能力,两者的融合在多机器人协作中尤为关键。

2025-08-19 07:01:10 521

原创 Gerber 文件格式是一种用于描述印刷电路板(PCB)设计的标准文件格式,广泛应用于 PCB 制造行业

9. 总结Gerber 文件格式(尤其是 RS-274-X 和 X2)是 PCB 制造的核心标准,用于描述电路板的图形数据。libgerbv 可以读取 RS-274-X 和 X2 格式的文件,解析其中的坐标、孔径和图形数据,并将其转换为可渲染的图像。它是一种基于矢量的 ASCII 文本格式,描述了 PCB 的各层(如铜层、阻焊层、丝印层等)的图形信息。Gerber 文件通常与钻孔文件(如 Excellon 格式)一起使用,共同提供 PCB 制造所需的完整数据。5. 使用 Gerber 文件的注意事项。

2025-08-19 07:01:00 593

原创 机器人的研发和应用涉及多个学科和知识领域,涵盖了从基础理论到实际工程的广泛内容

总结机器人技术的核心是多学科交叉,涵盖机械工程、电子工程、计算机科学、控制理论、人工智能、数学物理等领域。3. 计算机科学与软件工程(Computer Science and Software Engineering)软件是机器人的“大脑”,负责感知、决策和控制。机器人的研发和应用涉及多个学科和知识领域,涵盖了从基础理论到实际工程的广泛内容。1. 机械工程(Mechanical Engineering)机械工程是机器人设计与制造的核心,主要涉及机器人的物理结构、运动学和动力学。

2025-08-19 07:00:50 570

原创 Gerber 文件格式是印刷电路板(PCB)制造中用于描述电路板设计的标准格式,广泛应用于光绘、制造和检查 PCB 的各个阶段

10. 总结Gerber 文件格式(尤其是 RS-274-X 和 X2)是 PCB 设计和制造的核心标准,基于 ASCII 文本,包含坐标、孔径、操作码和元数据,用于描述 PCB 的各层图形。以下是对 Gerber 文件格式的详细中文解释,涵盖其历史、结构、版本、生成与使用方法,以及在 Qt 集成中的具体应用,力求全面且清晰。7. Gerber 文件与 Qt 集成的关系在 Qt 中集成 Gerbv(基于 libgerbv)的主要目的是解析和渲染 Gerber 文件,显示 PCB 设计。

2025-08-19 07:00:38 401

原创 人工智能芯片的整体架构设计人工智能(AI)芯片是为加速AI工作负载(如深度学习、推理、训练)而设计的专用集成电路(ASIC)或定制化处理器

总结AI芯片的架构设计围绕计算核心、存储层次、互连网络、控制单元和I/O接口,针对AI任务(如训练、推理)优化。结合预训练和微调(如LoRA),AI芯片可运行定制模型,满足特定需求。5. C++ Socket与AI芯片的示例以下是一个C++ Socket示例,模拟AI芯片与测试设备通信,传输微调后的模型推理结果(扩展前文Socket示例)。人工智能芯片的整体架构设计人工智能(AI)芯片是为加速AI工作负载(如深度学习、推理、训练)而设计的专用集成电路(ASIC)或定制化处理器。

2025-08-19 07:00:29 435

原创 Socket详解及C++应用示例在半导体行业,Socket编程常用于设备通信、测试自动化和数据传输,例如芯片测试设备与控制系统之间的通信

3. C++ Socket编程示例以下是一个基于TCP的C++ Socket编程示例,模拟半导体测试场景:客户端发送测试指令(如“START_TEST”),服务器接收指令并返回测试结果(如“TEST_PASSED”)。Socket详解及C++应用示例在半导体行业,Socket编程常用于设备通信、测试自动化和数据传输,例如芯片测试设备与控制系统之间的通信。本文将详细解释Socket编程的基础知识,并结合C++提供实际应用示例,展示如何在半导体相关场景中使用Socket实现高效通信。6. 挑战与解决方案。

2025-08-19 07:00:19 389

原创 神经网络优化在AI芯片及半导体行业中的应用神经网络优化是提升AI模型性能和效率的关键步骤,特别是在人工智能芯片设计和半导体行业应用中

结合前文提到的AI大模型预训练与微调、Socket通信和AI芯片架构,本文将详细探讨神经网络优化的方法、策略,以及在半导体行业中的具体应用,并提供C++相关示例。4. C++优化示例(结合Socket和AI芯片)以下是一个C++示例,模拟AI芯片上的神经网络优化(量化模型推理)与Socket通信,处理晶圆缺陷检测任务。神经网络优化在AI芯片及半导体行业中的应用神经网络优化是提升AI模型性能和效率的关键步骤,特别是在人工智能芯片设计和半导体行业应用中。5. 神经网络优化与AI芯片的协同。

2025-08-19 07:00:09 277

原创 半导体行业中AI大模型预训练与微调的应用在半导体行业,AI大模型通过预训练和微调(迁移学习)在设计、制造、测试和优化等环节展现出巨大潜力

未来,随着多模态模型和高效微调技术的发展,AI将在半导体行业发挥更大作用。2. 预训练在半导体行业的应用预训练通过在大规模通用数据集(如技术文献、专利、学术论文)上训练模型,使其掌握半导体相关的通用知识(如物理、化学、工艺流程)。半导体行业中AI大模型预训练与微调的应用在半导体行业,AI大模型通过预训练和微调(迁移学习)在设计、制造、测试和优化等环节展现出巨大潜力。3. 微调在半导体行业的应用微调将预训练模型适配到半导体行业的特定任务,通过在小规模、领域特定的标注数据集上进一步训练,显著提升性能。

2025-08-19 06:59:57 288

原创 Gerber X3 是 Gerber 文件格式的最新版本(2020 年由 Ucamco 发布),在 Gerber X2 和 RS-274-X 的基础上进一步扩展,旨在提高 PCB 制造的自动化、准确性

它继承了 RS-274-X 和 X2 的图形描述能力,新增了元件布局信息(如参考名称、旋转角度),提高了自动化和兼容性。Gerber X3 是 Gerber 文件格式的最新版本(2020 年由 Ucamco 发布),在 Gerber X2 和 RS-274-X 的基础上进一步扩展,旨在提高 PCB 制造的自动化、准确性和信息完整性。5. Gerber X3 的生成Gerber X3 文件通常由支持 X3 的 PCB 设计软件生成,目前支持 X3 的软件较少,但主流工具正逐步添加支持。

2025-08-19 06:59:47 561

原创 事件驱动设计(Event-Driven Design)是一种软件设计模式,广泛应用于用户界面(UI)开发、分布式系统、异步处理等领域

通过深入理解 SNScanNGForm 的事件驱动设计,我们可以看到它如何利用 Windows Forms 的事件循环和回调机制实现用户交互和业务逻辑的分离。结合回调机制的讨论,本文将深入解析事件驱动设计的原理、在 SNScanNGForm 中的体现、与回调机制的关系,以及更广泛的应用场景和设计注意事项。2. 事件驱动设计在 SNScanNGForm 中的体现在 SNScanNGForm 代码中,事件驱动设计主要通过 Windows Forms 的事件机制实现,同时结合回调机制扩展了灵活性。

2025-08-19 06:59:36 517

原创 基于 C# 语言的一个工业自动化控制系统的一部分,涉及到与 PLC(可编程逻辑控制器)交互、信号处理、日志记录以及用户界面交互等功能

ActionBase 和 ActionBaseRealize 提供了通用的动作框架,Init_Action 和 LoadWaferSNScanState_Action 实现了具体的初始化和扫码逻辑。2.3 Init_Action 类作用:Init_Action 继承自 ActionBaseRealize,负责处理初始化相关的 PLC 信号和业务逻辑。1. 代码结构概述代码包含了几个主要的类和接口,位于不同的命名空间中,主要用于实现自动化业务逻辑(如晶圆扫描、初始化等)。3. 代码的核心逻辑和流程。

2025-08-19 06:59:24 652

原创 事件驱动架构(Event-Driven Architecture, EDA)是一种软件设计模式,强调通过事件的生产、检测和消费来驱动系统行为,特别适合需要高响应性、松耦合和可扩展性的系统

七、总结事件驱动架构在提供的代码中通过 WinForms 消息循环、IAction 的 OnLog 和 Register、RecipeProcessor 的回调委托实现。在提供的代码(IAction 接口、RecipeProcessor 类和 btnReadPoint_Click 事件处理程序)中,事件驱动架构体现在 WinForms 的事件处理、IAction 的事件和注册机制,以及 RecipeProcessor 的回调委托。二、代码中的事件驱动架构实现。三、事件驱动架构的机制与优势。

2025-08-19 06:59:12 561

原创 ROS 2(Robot Operating System 2)是 ROS 的下一代版本,针对 ROS 1 的局限性(如单点故障、实时性不足、跨平台支持有限)进行了重大改进,特别适合工业级应用、多机器人

以下是一个详细的 ROS 2 深入学习指南,涵盖架构、核心组件、进阶功能、AI 融合、代码示例(带详细注释)以及学习路径和资源推荐,旨在帮助你从基础到精通。ROS 2(Robot Operating System 2)是 ROS 的下一代版本,针对 ROS 1 的局限性(如单点故障、实时性不足、跨平台支持有限)进行了重大改进,特别适合工业级应用、多机器人协作和嵌入式系统。9. 总结深入学习 ROS 2 需要掌握其分布式架构(DDS)、核心组件(节点、话题、服务、动作)和高级特性(生命周期、QoS)。

2025-08-18 07:08:23 892

原创 DDS(Data Distribution Service)是 ROS 2 的核心通信中间件,负责节点间高效、可靠的数据交换

9. 总结深入学习 DDS 配置需要掌握其架构(域、参与者、主题)、QoS 策略(可靠性、持久性、截止时间)以及 ROS 2 集成方法。1. DDS 概述DDS 是一种基于发布-订阅(Pub/Sub)模型的分布式通信标准,由 OMG(Object Management Group)制定,广泛用于实时系统(如航空、机器人、工业自动化)。本指南将详细解析 DDS 的核心概念、QoS 配置、ROS 2 集成、代码示例(带详细注释)以及学习路径,帮助你从基础到熟练掌握 DDS 配置。XML 配置示例:xml。

2025-08-18 07:07:39 606

原创 在 Qt 中集成 Gerbv(一个开源的 Gerber 文件查看器)主要目的是为了在 Qt 应用程序中实现 Gerber 文件的解析和渲染功能

1. 了解 Gerbv 和 Qt 的关系Gerbv 是一个专门用于查看和编辑 Gerber 文件的工具,支持 RS-274X、Excellon 钻孔文件和 pick-and-place 文件。在 Qt 中集成 Gerbv(一个开源的 Gerber 文件查看器)主要目的是为了在 Qt 应用程序中实现 Gerber 文件的解析和渲染功能。步骤 4:直接使用 libgerbv(不使用 gerbvQt)如果不想使用 gerbvQt,可以直接调用 libgerbv 的 API 来解析和渲染 Gerber 文件。

2025-08-18 07:06:59 688

原创 地精排序(Gnome Sort)是一种简单、直观的比较型排序算法,类似于插入排序,但通过“向前冒泡”或“向后移动”来逐步将元素移到正确位置

以下将详细描述地精排序的原理,结合半导体车间调度、测试机、MES、EAP等场景的应用,提供C#代码实现、示例和测试用例,并与并行圈排序、计数排序、梳排序、BST排序、优化桶排序、优化冒泡排序及加权有向稠密图进行对比。1.1 地精排序原理地精排序的工作方式类似于一个“地精”在整理一排花盆:从左到右检查每个元素,若当前元素比前一个元素小,则交换并向后退一步检查;2. C#实现地精排序以下是C#实现的地精排序,包含提前终止优化,支持通用类型(通过IComparable接口),适用于半导体场景中的任务或批次排序。

2025-08-18 06:29:40 798

原创 快速排序(Quick Sort)是一种高效的比较型排序算法,采用分治策略,通过选择一个“基准”(pivot)将数组划分为子数组并递归排序

以下将详细描述快速排序的原理,结合半导体场景,提供C#代码实现、示例和测试用例,并与LSD基数排序、插入排序、并行堆排序、地精排序、并行圈排序、计数排序、梳排序、BST排序、优化桶排序、优化冒泡排序及加权有向稠密图进行对比。2. C#实现快速排序以下是C#实现的快速排序,采用三数取中和插入排序优化,支持通用类型(通过IComparable接口),适用于半导体场景中的任务或批次排序。应用:在MES中,计算从清洗工序到其他工序的最短路径后,用快速排序按路径长度排序,优先调度短路径任务,适合中到大规模数据集。

2025-08-18 06:29:25 501

原创 最低位优先基数排序(Least Significant Digit Radix Sort,简称LSD Radix Sort)是一种非比较型排序算法,通过按位从最低有效位(LSD)到最高有效位(MSD)

以下将详细描述LSD基数排序的原理,结合半导体场景,提供C#代码实现、示例和测试用例,并与插入排序、并行堆排序、地精排序、并行圈排序、计数排序、梳排序、BST排序、优化桶排序、优化冒泡排序及加权有向稠密图进行对比。2. C#实现LSD基数排序以下是C#实现的LSD基数排序,针对非负整数,支持通用类型(需映射为整数),适用于半导体场景中的任务或批次排序。应用:在MES中,计算从清洗工序到其他工序的最短路径后,用LSD基数排序按路径长度排序,优先调度短路径任务,适合大规模整数数据。以下示例使用LSD基数排序。

2025-08-18 06:29:06 725

原创 低温储存试验(Low Temperature Storage,LTS)试验目的

典型应用低温储存试验广泛应用于需在极寒环境(如航空航天、北极设备、深海探测)或长期储存场景下运行的功率器件,确保器件在低温非工作状态下的可靠性。如需更详细的技术细节、与其他试验的对比分析或特定器件测试案例,请提供更多背景信息!低温储存试验(Low Temperature Storage,LTS)试验目的。

2025-08-18 06:28:46 157

原创 树绘制器(Tree Drawer)

树绘制器(Tree Drawer)”,且之前我已提供了一个结合最小公倍数(LCM)、粒子群优化(PSO)和树形结构的 C# 实现,用于可视化半导体生产计划中的调度方案(如工序启动时间和完成时间)。考虑到您的问题与之前相同,我将确认是否需要补充或调整内容,并提供一个精简的树绘制器实现,聚焦于新的或更具体的半导体场景。一、树绘制器在半导体生产计划中的应用树绘制器用于可视化半导体车间调度、测试机、MES 和 EAP 中的层次结构,结合 LCM 优化周期性任务的同步。2. 测试用例csharp。

2025-08-18 06:28:30 727

原创 插入排序(Insertion Sort)是一种简单、直观的比较型排序算法,通过逐个将元素插入到已排序的子数组中来实现排序

插入排序因其实现简单、适合小型数据集和部分有序数据,广泛应用于资源受限或动态插入场景,特别是在半导体车间调度、测试机、MES、EAP等场景中。以下将详细描述插入排序的原理,结合半导体场景,提供C#代码实现、示例和测试用例,并与并行堆排序、地精排序、并行圈排序、计数排序、梳排序、BST排序、优化桶排序、优化冒泡排序及加权有向稠密图进行对比。2. C#实现插入排序以下是C#实现的插入排序,包含提前终止优化,支持通用类型(通过IComparable接口),适用于半导体场景中的任务或批次排序。

2025-08-18 06:27:49 444

原创 高温高湿反偏(H3TRB)试验的定义及方法定义高温高湿反偏试验(High Temperature High Humidity Reverse Bias,H3TRB)是一种针对功率半导体器件(如MOSF

高温高湿反偏(H3TRB)试验的定义及方法定义高温高湿反偏试验(High Temperature High Humidity Reverse Bias,H3TRB)是一种针对功率半导体器件(如MOSFET、IGBT、SiC MOSFET等)的可靠性测试,旨在评估器件在高温、高湿度和高反向电压应力下的长期稳定性。它主要检测封装材料、芯片边缘终止结构及钝化层在湿气侵蚀和高电场环境下的性能退化,模拟器件在恶劣环境(如高湿度气候或工业场景)中的老化行为。

2025-08-18 06:27:31 334

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除