《DETRs Beat YOLOs on Real-time Object Detection》将DETR加速至实时SOTA

本文介绍了如何通过简化DINO的encoder和引入IoU感知查询选择,将DETR模型优化到实时水平,提升了目标检测的效率和性能。研究分析了多尺度特征融合的计算冗余,并提出了新的encoder结构和查询选择策略,实现在COCO MAP上的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
最近看到百度写的一篇还算不错的DETR论文,通过简化DINO的encoder层将模型加速到实时水平,翻译了下,以作记录。
论文地址:https://arxiv.org/pdf/2304.08069.pdf
开源地址:https://github.com/PaddlePaddle/PaddleDetection
在这里插入图片描述

模型结构

在这里插入图片描述
RT-Detr网络首先利用骨干网络{S3,S4,S5}的最后三个阶段的特征作为encoder的输入。encoder通过尺度内特征交互(AIFI,按文中的说法其实就是一个transformer layer)和跨尺度特征融合模块(CCFM)将多尺度特

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

blanokvaffy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值