题目描述
ss请cc来家里钓鱼,鱼塘可划分为n*m的格子,每个格子每分钟有不同的概率钓上鱼,cc一直在坐标(x,y)的格子钓鱼,而ss每分钟随机钓一个格子。问t分钟后他们谁至少钓到一条鱼的概率大?为多少?
输入描述:
第一行五个整数n,m,x,y,t(1≤n,m,t≤1000,1≤x≤n,1≤y≤m);
接下来为一个n*m的矩阵,每行m个一位小数,共n行,第i行第j个数代表坐标为(i,j)的格子钓到鱼的概率为p(0≤p≤1)
输出描述:
输出两行。第一行为概率大的人的名字(cc/ss/equal),第二行为这个概率(保留2位小数)
输入例子:
2 2 1 1 1
0.2 0.1
0.1 0.4
输出例子:
equal
0.20
这个题其实很简单。只要保证SS的平均概率大,ss就能赢
public class Main {
/**
* 非要逐行读取才不超时!
*/
//思路:cc:固定某点概率;ss:所有点求平均概率,再由独立事件公式求t分钟后
public static void main(String[] args) {
Scanner reader = new Scanner(System.in);
while(reader.hasNext()){
String[] s1 = reader.nextLine().split(" ");
int n = Integer.parseInt(s1[0]);
int m = Integer.parseInt(s1[1]);
int x = Integer.parseInt(s1[2]);
int y = Integer.parseInt(s1[3]);
int t = Integer.parseInt(s1[4]);
double proCC = 0;
double sumPro = 0;
for(int i=1; i<=n; i++){
String[] s = reader.nextLine().split(" ");
for(int j=1; j<=m; j++){
double p = Double.parseDouble(s[j-1]);
sumPro += p;
if((i == x) && (j == y)){
proCC = p;
}
}
}
sumPro /= (n*m);
//!注意这里:t个独立事件:P(t1Ut2Ut3..Utn) = 1-P(非t1)P(非t2)...P(非t3)
if(proCC == sumPro){
System.out.println("equal");
System.out.println(String.format("%.2f", 1 - Math.pow(1-proCC, t))); //保留小数点后两位
}else if(proCC > sumPro){
System.out.println("cc");
System.out.println(String.format("%.2f", 1 - Math.pow(1-proCC, t)));
}else if(proCC < sumPro){
System.out.println("ss");
System.out.println(String.format("%.2f", 1 - Math.pow(1-sumPro, t)));
}
}
}
}