ST表(解决RMQ问题)

有点时间补一下这玩意吧。

首先先说明 RMQ 是一类问题,指 区间最值问题,而 ST 表是解决 RMQ 问题的一把手术刀(手术刀,锋利但不通用)。

作用

O ( log ⁡ n ) O(\log n) O(logn) 的预处理。
O ( 1 ) O(1) O(1)区间最值查询。
不可以更改区间数值。

原理

原理是倍增

我们将设 f [ i ] [ j ] f[i][j] f[i][j] 是从 i i i 处向外包含 2 j 2^j 2j 个数中的最大值。即 [ i , i + 2 j − 1 ] [i, i + 2^j - 1] [i,i+2j1] 中的最大值,原数组为 a [ i ] a[i] a[i],其中 f [ i ] [ 0 ] = a [ i ] f[i][0] = a[i] f[i][0]=a[i]

因为任何区间长度 l e n len len,无论怎么分,其最多只需要两个 f [ i ] [ j ] f[i][j] f[i][j] 就可以完全覆盖它。

证明:区间长度 l e n len len,可以分出一个比 l e n len len 小的最大的 2 n 2^n 2n,那么 l e n − 2 n < 2 n len - 2^n < 2^n len2n<2n, 如果不符合这个的话, n n n 就可以继续往上增加直到出现上述情况。因此一定有一个 n n n 使得 l e n − 2 n < 2 n len - 2^n < 2^n len2n<2n 成立,而 f [ i ] [ j ] f[i][j] f[i][j] 的覆盖的长度为 2 j 2^j 2j,只要让 j j j 等于上面的 n n n,就可以最多用两个 f f f 可以覆盖其范围,且不会超出边界。也可以知道 n n n 就等于 ⌊ log ⁡ 2 l e n ⌋ \lfloor \log_2 len \rfloor log2len

根据上面的证明我们也就知道如何去查询了,设 f 1 f_1 f1 一定包含这个区间的开头, f 2 f_2 f2 一定包含这个区间的末尾。大致如下图。
![[ST表.png|475]]
设这个区间为 [ i , j ] [i, j] [i,j],那么区间长度 l e n len len 就是 j − i + 1 j - i + 1 ji+1,证明中说到的 n n n 就等于 log ⁡ 2 l e n \log_2{len} log2len
由图可知 f 1 f_1 f1 包含的区间就是 [ i , i + 2 n − 1 ] [i, i + 2^n - 1] [i,i+2n1] f 2 f_2 f2 就是 [ j − 2 n + 1 , j ] [j - 2^n + 1,j] [j2n+1,j]。对应 f f f 数组就是 f [ i ] i + 2 n − 1 ] f[i]i + 2^n - 1] f[i]i+2n1] f [ j − 2 n + 1 ] [ j ] f[j - 2^n + 1][j] f[j2n+1][j]

实现

问题来了怎么实现它。

预处理

也很简单,根据之前倍增 L C A LCA LCA 的思想(没学过也可以),我们把一步拆成两步走,即先跳 2 j − 1 2^{j - 1} 2j1 步再跳 2 j − 1 2^{j-1} 2j1 步,可得出递推式 f [ i ] [ j ] = f [ f [ i ] [ j − 1 ] ] [ j − 1 ] f[i][j] = f[f[i][j - 1]][j - 1] f[i][j]=f[f[i][j1]][j1],有了递推式, 那么求出它就很简单了。

而求出 ST 表, 也就是预处理就是下面代码

for (int j = 0; j < M; j ++ ) // M是logn上取整, 即包含整个n
	for (int i = 1; i + (1 << j) - 1 <= n; i ++ )
		if (j == 0) f[i][j] = w[i]; // 如果只跳一步, 那么最大值就是这个值它本身
		else f[i][j] = max(f[i][j], f[f[i][j - 1]][j - 1]); // 注意是求最大值

这个时间复杂度很好判断, 最坏 O ( n log ⁡ n ) O(n\log n) O(nlogn),但是是很小的 log ⁡ n \log n logn,能从循环中看出来(手术刀)因为有预处理,所以是不能更改原数组的,否则必须再次预处理(但这样就不如用线段树了)。

l g lg lg 数组

上面提到了 l g lg lg 数组, l g [ i ] lg[i] lg[i] log ⁡ 2 i \log_2i log2i 下取整。

为什么使用这个数组而不是, 直接用函数 log ⁡ 2 ( ) \log2() log2() 呢?

这里是为了保证查询的 O ( 1 ) O(1) O(1),如果调用 log2() ⁡ \operatorname {log2()} log2() 函数的话,时间复杂度会增加, 而通过预处理
l g lg lg 数组的方式,就可以保证查询 O ( 1 ) O(1) O(1)

l g lg lg 数组一般预处理一遍即可,是 O ( n log ⁡ n ) O(n\log n) O(nlogn) 的时间复杂度,不会影响整体的预处理时间复杂度,可以直接加在上面的预处理里面。

查询

怎么查询呢?
你要知道, 最大值的区间是可以重叠的, 如 [ 1 , 5 ] [1, 5] [1,5] 的最大值, 等于 [ 1 , 3 ] [1, 3] [1,3] 的最大值和 [ 2 , 5 ] [2, 5] [2,5] 的最大值的最大值, 虽然区间重叠了,但不影响答案的正确性,即最大值的区间是可以重叠的。

我们已经得到了 f 1 , f 2 f_1,f_2 f1,f2 (在上面原理中),根据上面的性质,那么就很简单了。
我们设 l g [ i ] lg[i] lg[i] ⌊ log ⁡ 2 i ⌋ \lfloor \log_2i \rfloor log2i ,那么从 i i i j j j 之间的长度是 l e n = j − i + 1 len = j - i + 1 len=ji+1,最大值就是 max ⁡ ( f [ i ] [ l g [ l e n ] ] , f [ j − 2 l g [ i ] + 1 ] [ l g [ l e n ] ] ) \max(f[i][lg[len]], f[j - 2^{lg[i]} + 1][lg[len]]) max(f[i][lg[len]],f[j2lg[i]+1][lg[len]])

其中 j − 2 l g [ i ] + 1 j - 2^{lg[i]} + 1 j2lg[i]+1 ,这是 f 2 f_2 f2 包含区间的开头,比如 [ 2 , 5 ] [2, 5] [2,5] 里面有 4 4 4 个数,你从 5 5 5 4 4 4 1 1 1,但是你的区间是从 2 2 2 开始的,所以要加上 1 1 1。由区间 [ i , j ] [i, j] [i,j] 长度计算公式 j − i + 1 = l e n j - i + 1 = len ji+1=len 也可以得到 i = j − l e n + 1 i = j - len + 1 i=jlen+1 这个式子。

代码

上面的要快一点点,下面的更好写保证对,注意 log ⁡ 2 ( ) \log2() log2() 函数

int last = 0;
for (int i = 1; i <= n; i ++ )
{
	while (1 << last <= i) last ++ ; // 始终保证 2^last > i, 以便求出i的最小log2
	lg[i] = last - 1;
}

或者

for (int i = 1; i <= n; i ++ )
{
	lg[i] = log2(i);
}

例题

ST表(跳表)

/* 
    中心思想: 倍增
    设f[i][j]是从i处向外2^j格里面的最大值;
    
    预处理是O(nlogn)
    查询是O(1)的
    
    无法修改
    只能查询
    像树状数组一样的"手术刀"
    
    因为查询耗时O(1), 所以在"特殊情况"下没法被O(log)的线段树替代
*/

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 200010, M = log2(N) + 1;

int n, m;
int w[N];
int f[N][M];
int lg[N];

void init()
{
    for (int j = 0; j < M; j ++ )
        for (int i = 1; i + (1 << j) - 1 <= n; i ++ )
            if (j == 0) f[i][j] = w[i];
            else f[i][j] = max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);

    int last = 0;
    for (int i = 1; i < N; i ++ ) // log数组, 这里的预处理是自己写的, 利用一个last能干好多事
    {
        while (1 << last <= i) last ++ ;
        lg[i] = last - 1;
    }
}

int query(int l, int r)
{
    int len = r - l + 1;
    return max(f[l][lg[len]], f[r - (1 << lg[len]) + 1][lg[len]]);
}

int main()
{
    cin >> n;
    for (int i = 1; i <= n; i ++ ) cin >> w[i];
    init();
    cin >> m;
    while (m -- )
    {
        int a, b;
        cin >> a >> b;
        cout << query(a, b) << endl;
    }
    
    return 0;
}
线段树
/*
    线段树的话, 比较简单就不打注释了
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>

using namespace std;

const int N = 200010;

int w[N];
int n, m;

struct Node
{
    int l, r;
    int maxv;
}tr[N * 4];

void pushup(int u)
{
    tr[u].maxv = max(tr[u << 1].maxv, tr[u << 1 | 1].maxv);
}

void build(int u, int l, int r)
{
    if (l == r) tr[u] = {l, l, w[l]};
    else
    {
        int mid = l + r >> 1;
        tr[u] = {l, r, -0x3f3f3f3f};
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }
}

int query(int u, int l, int r)
{
    if (tr[u].l >= l && tr[u].r <= r) return tr[u].maxv;
    else
    {
        int mid = tr[u].l + tr[u].r >> 1;
        int maxv = -0x3f3f3f3f;
        if (l <= mid) maxv = query(u << 1, l, r);
        if (r > mid) maxv = max(maxv, query(u << 1 | 1, l, r));
        
        return maxv;
    }
}

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
    build(1, 1, n);
    scanf("%d", &m);
    
    while (m -- )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        printf("%d\n", query(1, l, r));
    }
    return 0;
}
  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值