欧拉函数(新)

这是重新整理的欧拉函数,会把欧拉函数的一些性质说出来。

欧拉函数即 φ ( i ) \varphi(i) φ(i),表示从 [ 1 , i ] [1, i] [1,i] 之间和 i i i 互质的数的数量 ( a a a b b b 互质即 gcd ⁡ ( a , b ) = 1 \gcd(a, b) = 1 gcd(a,b)=1)。
注意当 i = 1 i=1 i=1 时, φ ( 1 ) = 1 \varphi(1) = 1 φ(1)=1

递推公式(积性)

欧拉函数有一个算是递推式的东西,即对于任意正整数 a a a
φ ( a b ) = φ ( a ) × φ ( b ) × gcd ⁡ ( a , b ) φ ( gcd ⁡ ( a , b ) ) φ(ab) = \frac {φ(a) \times φ(b) \times \gcd(a,b)}{φ(\gcd(a,b))} φ(ab)=φ(gcd(a,b))φ(a)×φ(b)×gcd(a,b)
易得,当 a , b a,b a,b 互质时,有:
φ ( a b ) = φ ( a ) × φ ( b ) \varphi(ab) = \varphi(a) \times\varphi(b) φ(ab)=φ(a)×φ(b)

证明

利用计算公式证明,你可以直接把计算公式带进去直接化,设 d = gcd ⁡ ( a , b ) d = \gcd(a,b) d=gcd(a,b) 那么可得
φ ( a b ) = φ ( a ) × φ ( b ) × gcd ⁡ ( a , b ) φ ( gcd ⁡ ( a , b ) ) = a ∏ i = 1 k a ( 1 − 1 p i ) × b ∏ i = 1 k b ( 1 − 1 p i ) × d d ∏ i = 1 k d ( 1 − 1 p i ) = a ∏ i = 1 k a ( 1 − 1 p i ) × b ∏ i = 1 k b ( 1 − 1 p i ) ∏ i = 1 k d ( 1 − 1 p i ) \begin{aligned} φ(ab) &= \frac {φ(a) \times φ(b) \times \gcd(a,b)}{φ(\gcd(a,b))} \\ &= \frac{a\prod_{i=1}^{k_a} \left(1-\frac{1}{p_i}\right) \times b\prod_{i=1}^{k_b} \left(1-\frac{1}{p_i}\right) \times d} {d\prod_{i=1}^{k_d} \left(1-\frac{1}{p_i}\right)} \\ &= \frac{a\prod_{i=1}^{k_a} \left(1-\frac{1}{p_i}\right) \times b\prod_{i=1}^{k_b} \left(1-\frac{1}{p_i}\right)} {\prod_{i=1}^{k_d} \left(1-\frac{1}{p_i}\right)} \end{aligned} φ(ab)=φ(gcd(a,b))φ(a)×φ(b)×gcd(a,b)=di=1kd(1pi1)ai=1ka(1pi1)×bi=1kb(1pi1)×d=i=1kd(1pi1)ai=1ka(1pi1)×bi=1kb(1pi1)
因为 d 是 a , b a,b a,b 的最大公约数,那么分母上的 ∏ i = 1 k d ( 1 − d p i ) \prod_{i=1}^{k_d} \left(1-\frac{d}{p_i}\right) i=1kd(1pid) 就可以把 a ∏ i = 1 k a ( 1 − 1 p i ) × b ∏ i = 1 k b ( 1 − 1 p i ) a\prod_{i=1}^{k_a} \left(1-\frac{1}{p_i}\right) \times b\prod_{i=1}^{k_b} \left(1-\frac{1}{p_i}\right) ai=1ka(1pi1)×bi=1kb(1pi1) a , b a,b a,b ( 1 − 1 p i ) \left( 1 - \frac{1}{p_i} \right) (1pi1) 中相同的部分给消掉一个,剩下的就不重复,且乘起来就恰好就是 a b ∏ i = 1 k a b ( 1 − 1 p i ) ab\prod_{i=1}^{k_{ab}} \left(1-\frac{1}{p_i}\right) abi=1kab(1pi1),也就是 φ ( a b ) \varphi(ab) φ(ab)。因为 a , b a,b a,b 含有 a b ab ab 的所有质因子。
证毕。
这也就证明了欧拉函数是积性函数。

计算公式(通项式)

即:
φ ( N ) = N × ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × … × ( 1 − 1 p k ) , N ∈ Z , p i  is prime \varphi(N) = N \times (1 - \frac{1}{p_1}) \times (1 - \frac{1}{p_2}) \times \ldots \times (1 - \frac{1}{p_k}), \quad N \in \text Z, p_i \text{ is prime} φ(N)=N×(1p11)×(1p21)××(1pk1),NZ,pi is prime

利用积性证明

欧拉函数是积性函数,例如 a , b a, b a,b 都为正整数,有递推式为
φ ( a b ) = φ ( a ) × φ ( b ) × gcd ⁡ ( a , b ) φ ( gcd ⁡ ( a , b ) ) φ(ab) = \frac {φ(a) \times φ(b) \times \gcd(a,b)}{φ(\gcd(a,b))} φ(ab)=φ(gcd(a,b))φ(a)×φ(b)×gcd(a,b)
a , b a,b a,b 互质时,则有
φ ( a b ) = φ ( a ) × φ ( b ) φ(ab) = φ(a) \times φ(b) φ(ab)=φ(a)×φ(b)
下面开始证明
设一个正整数 N N N,把它分解成质数,可得
N = p 1 b 1 × p 2 b 2 × p 3 b 3 × … × p k b k , p i  is prime N = p_1^{b_1} \times p_{2}^{b_2} \times p_{3}^{b_3} \times \ldots \times p_{k}^{b_k} ,\quad p_i \text{ is prime} N=p1b1×p2b2×p3b3××pkbk,pi is prime
又因为 当 a , b a,b a,b 互质时

φ ( a b ) = φ ( a ) × φ ( b ) , gcd ⁡ ( a , b ) = 1 \varphi(ab) = \varphi(a) \times φ(b), \quad \gcd(a, b) = 1 φ(ab)=φ(a)×φ(b),gcd(a,b)=1

所以
φ ( N ) = φ ( p 1 b 1 ) × φ ( p 2 b 2 ) × φ ( p 3 b 3 ) × … × φ ( p k b k ) \varphi(N) = \varphi(p_1^{b_1}) \times \varphi(p_2^{b_2}) \times \varphi(p_3^{b_3}) \times \ldots \times \varphi(p_k^{b_k}) φ(N)=φ(p1b1)×φ(p2b2)×φ(p3b3)××φ(pkbk)
因为对于 φ ( p b ) \varphi(p_b) φ(pb) 来说, [ 1 , p b ] [1, p^b] [1,pb] 一共有 p b p^b pb 个数。其中不与 p b p^b pb 互质的数是 1 p , 2 p , 3 p , … , p b − 1 × p 1p, 2p, 3p, \ldots, p^{b-1} \times p 1p,2p,3p,,pb1×p ,总共 p b − 1 p^{b-1} pb1 个,剩下的就是和 p b p_b pb 互质的数,共 p b − p b − 1 p^b - p^{b-1} pbpb1 个数。

φ ( p b ) = p b × ( 1 − 1 p ) φ(p^b) = p^b \times (1 - \frac{1}{p}) φ(pb)=pb×(1p1)

因为
φ ( N ) = φ ( p 1 b 1 ) × φ ( p 2 b 2 ) × φ ( p 3 b 3 ) × … × φ ( p k b k ) φ ( p b ) = p b − p b − 1 \varphi(N) = \varphi(p_1^{b_1}) \times \varphi(p_2^{b_2}) \times \varphi(p_3^{b_3}) \times \ldots \times \varphi(p_k^{b_k}) \\ \varphi(p^b) = p^b - p^{b-1} φ(N)=φ(p1b1)×φ(p2b2)×φ(p3b3)××φ(pkbk)φ(pb)=pbpb1
可得
φ ( N ) = p 1 b 1 ( 1 − 1 p 1 ) × p 2 b 2 ( 1 − 1 p 2 ) × … × p k b k ( 1 − 1 p k ) \varphi(N) = p_1^{b_1} (1 - \frac{1}{p_1}) \times p_2^{b_2}(1 - \frac{1}{p_2}) \times \ldots \times p_k^{b_k}(1 - \frac{1}{p_k}) φ(N)=p1b1(1p11)×p2b2(1p21)××pkbk(1pk1)

φ ( N ) = ( p 1 b 1 × p 2 b 2 × … × p k b k ) × ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) … ( 1 − 1 p k ) \varphi(N) = (p_1^{b_1} \times p_2^{b_2} \times \ldots \times p_k^{b_k}) \times (1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{pk}) φ(N)=(p1b1×p2b2××pkbk)×(1p11)(1p21)(1pk1)
又因为
N = p 1 b 1 × p 2 b 2 × … × p k b k N = p_1^{b_1} \times p_2^{b_2} \times \ldots \times p_k^{b_k} N=p1b1×p2b2××pkbk
可得
φ ( N ) = N × ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × … × ( 1 − 1 p k ) \varphi(N) = N \times (1 - \frac{1}{p_1}) \times (1 - \frac{1}{p_2}) \times \ldots \times (1 - \frac{1}{p_k}) φ(N)=N×(1p11)×(1p21)××(1pk1)

利用容斥定理

设一个正整数 N N N

由算数的基本定理得
N = p 1 b 1 × p 2 b 2 × p 3 b 3 × … × p k b k , p i  is prime N = p_1^{b_1} \times p_{2}^{b_2} \times p_{3}^{b_3} \times \ldots \times p_{k}^{b_k} ,\quad p_i \text{ is prime} N=p1b1×p2b2×p3b3××pkbk,pi is prime
对于 φ ( N ) \varphi(N) φ(N) 来说,求和 N N N 互质的数,也就是求和 N N N 不互质的数的数量。
那么对于分解出的一个质数 p i p_i pi 来说,在 [ 1 , N ] [1, N] [1,N] 里面和它不互质的数就为 p i p_i pi 的倍数,共 N p i \frac{N}{p_i} piN 个,但这个数量肯定要比和 N N N 不互质的数的数量多。我们可以画一个韦恩图来看。

我们要求和 N N N 不互质的数 m m m,那么 m m m 只需要和任意一个 p i p_i pi 不互质即可,即上图的全集。
那么这就可以用容斥定理求出全集了。而这里的 p i p_i pi p j p_j pj 的交集数量即为 N p i p j \frac{N}{p_ip_j} pipjN

很容易可以得到
φ ( N ) = N − ( ∑ i = 1 k ( N p i ) − ∑ i = 1 k ∑ j i < j ≤ k ( N p i p j ) + … ) \varphi(N) = N - (\sum_{i = 1}^{k}(\frac{N}{p_i}) - \sum_{i = 1}^{k} \sum_{j}^{i < j \le k}(\frac{N}{p_i p_j}) + \ldots ) φ(N)=N(i=1k(piN)i=1kji<jk(pipjN)+)
而这个式子可以化为
φ ( N ) = N × ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × … × ( 1 − 1 p k ) \varphi(N) = N \times (1 - \frac{1}{p_1}) \times (1 - \frac{1}{p_2}) \times \ldots \times (1 - \frac{1}{p_k}) φ(N)=N×(1p11)×(1p21)××(1pk1)
可以发现上面两个式子是等价的。可以这么理解,对于 ( 1 − 1 p i ) (1 - \frac{1}{p_i}) (1pi1) 来说,我们选取一个这个式子里的 − 1 p i -\frac{1}{p_i} pi1 其他的选 1 1 1,那么最后得出的就是 − 1 p i -\frac{1}{p_i} pi1,如果选两个 p i p_i pi,其他的选 1 1 1,得出来的也就是 1 p i p j \frac{1}{p_ip_j} pipj1 ,选三个 p i p_i pi,其他选 1 1 1,得出的就是 − 1 p i p j p k -\frac{1}{p_ip_jp_k} pipjpk1,而这恰好就是容斥定理的进行形式。也就是说这两个是等价的

总结

于是就可以通过分解 N N N 的质因数求出来 φ ( N ) \varphi(N) φ(N),由此也可以看出,一个数的欧拉函数的大小和质数的次幂无关。

试除法分解质因数是 O ( n ) O(\sqrt n) O(n ) 的, 所以求 φ ( N ) \varphi(N) φ(N) 也就是 O ( n ) O(\sqrt n) O(n )
具体见代码

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

int n, m;

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        cin >> n;
        int res = n;
        for (int i = 2; i <= n / i; i ++ )
        {
            if (n % i == 0) 
            {
                res = res / i * (i - 1); // 相当于res * (1 - 1 / i), 这样是为了防止出现小数, 下取整没了, 最主要的就是这里
                while (n % i == 0) n /= i;
            }
        }
        if (n != 1) res = res / n * (n - 1); // 这里不要忘记
        cout << res << endl;
    }
    return 0;
}

一个数欧拉函数的大小和质因数次幂无关

更快点?要不要试试先把质数筛出来?这样也可减少一定的时间。

筛法求欧拉函数

O ( n ) O(n) O(n)
这里写的注释很好,就不多重打了。
是用线性筛顺便筛出欧拉函数,首先,线性筛可以筛出质数 p,质数的欧拉函数很好求,因为一个质数在 [ 1 , p ] [1, p] [1,p] 中除了 p 本身以外,其他所有数都与它互质,所以 φ ( p ) = p − 1 \varphi(p) = p - 1 φ(p)=p1
而对于筛掉的数,我们可以知道,筛掉的数是用这个数 u 的最小质因子 p 筛去的,唉?质因子是质数吧,按算法运行顺序来说, u 是由 p × i p \times i p×i 得到的,那么 i 是整数,且肯定比 u 小,按理说,它的欧拉函数我已经求出来了。而 φ ( p ) = p − 1 \varphi(p) = p - 1 φ(p)=p1,我们还知道一个等式。

φ ( a b ) = φ ( a ) × φ ( b ) × gcd ⁡ ( a , b ) φ ( gcd ⁡ ( a , b ) ) \varphi(ab) = \frac {φ(a) \times φ(b) \times \gcd(a,b)}{φ(\gcd(a,b))} φ(ab)=φ(gcd(a,b))φ(a)×φ(b)×gcd(a,b)
那么就可以得出来了
φ ( u ) = φ ( i × p ) = φ ( p ) × φ ( i ) × gcd ⁡ ( p , i ) φ ( gcd ⁡ ( i , p ) ) \varphi(u) = \varphi(i \times p) = \frac {\varphi(p) \times \varphi(i) \times \gcd(p,i)}{\varphi(\gcd(i,p))} φ(u)=φ(i×p)=φ(gcd(i,p))φ(p)×φ(i)×gcd(p,i)

其中因为 p p p 是质数,而 p < = i p <= i p<=i ,并且 p 是 i 的质因子,所以 gcd ⁡ ( i , p ) = p \gcd(i,p) = p gcd(i,p)=p,所以 φ ( gcd ⁡ ( p , i ) ) = φ ( p ) \varphi(\gcd(p,i)) = \varphi(p) φ(gcd(p,i))=φ(p)
所以有下式
φ ( u ) = φ ( i × p ) = p × φ ( i ) \varphi(u) = \varphi(i \times p) = {p \times \varphi(i)} φ(u)=φ(i×p)=p×φ(i)

在注释里还有一种解释方法,这里就不说了。

/*
    线性筛可以求出很多附加的东西
    具体会在代码里写注释
*/

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1000010;

int n;
int primes[N], cnt;
bool st[N];
int phi[N]; // phi[i] 是i的欧拉函数
LL sum;

int main()
{
    cin >> n;
    phi[1] = 1; // 1的欧拉函数是1, 需要手动写上
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i] == 0)
        {
            primes[ ++ cnt] = i;
            sum += phi[i] = i - 1; // 首先如果i是质数, 质数和所有数都互质(除了它自己), 那么对于质数i的φ, 就是i - 1
        }
        for (int j = 1; primes[j] <= n / i; j ++ )
        {
            st[i * primes[j]] = true;
            if (i % primes[j] == 0) // 如果i % pj == 0 那么pj就是i的最小质因数(这点在线性筛里提到过)
            { // 说明i的质因数包括pj, 那么φ(i)里面包括 (1 - 1/pj), 一个数欧拉函数的大小和其质因数的次幂无关, 根据φ(N) = N * (1 - 1/p1) * (1 - 1/p2) * ... * (1 - 1/pk);
                sum += phi[i * primes[j]] = phi[i] * primes[j]; // pj * i 比 i 只多了一个pj而且pj还在i的质因数里面, 那么 φ(i*pj)只比φ(i)多一个pj 也就是 φ(i*pj) = φ(i) * pj
                break;
            }
            sum += phi[i * primes[j]] = phi[i] * (primes[j] - 1); // 和上面同理, 但是pj不是i的质因数, 所以φ(i) 不包含 (1 - 1/pj), φ(pj*i)需要加上这个 
        }
    }
    cout << sum + 1 << endl;
    
    return 0;
}
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值