JDK源码阅读之HashMap

HashMap简介

基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了非同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

重点:实现map接口,允许null值和null键(为什么允许空值?因为空值调用方法会报空指针异常),不保证顺序(为什么不保证顺序?)

此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。

HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。

通常,默认加载因子 (.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。

这三段话都在讲HashMap的重要方法rehash,并且与之相关联的变量,默认加载因子,初始容量,当前所占容量(哈希表中的条目数)

另外HashMap不是线程同步的,如果想要线程同步的map,最好在创建时完成这一操作,以防止对映射进行意外的非同步访问,如下所示:

Map m = Collections.synchronizedMap(new HashMap(...));

迭代器也是使用fail-fast模式。

HashMap类图

HashMap类图

HashMap重要方法

方法变量

// 默认的初始化容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 最大的容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 由链表转换成树的阈值
static final int TREEIFY_THRESHOLD = 8;
//由树转换成链表的阈值
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中的bin被树化时最小的hash表容量
static final int MIN_TREEIFY_CAPACITY = 64;

构造方法

public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

所有的构造方法的目的只有一个就是确定loadFactor 和threshold这两个变量。

精华方法

putVal


final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                // 将第一个元素赋值给e,用e来记录
                e = p;
        // hash值不相等,即key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) { 
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
} 

resize

final Node<K,V>[] resize() {
    // 当前table保存
    Node<K,V>[] oldTab = table;
    // 保存table大小
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    // 保存当前阈值 
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 之前table大小大于0
    if (oldCap > 0) {
        // 之前table大于最大容量
        if (oldCap >= MAXIMUM_CAPACITY) {
            // 阈值为最大整形
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 容量翻倍,使用左移,效率更高
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
            oldCap >= DEFAULT_INITIAL_CAPACITY)
            // 阈值翻倍
            newThr = oldThr << 1; // double threshold
    }
    // 之前阈值大于0
    else if (oldThr > 0)
        newCap = oldThr;
    // oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
    else {           
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 新阈值为0
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    // 初始化table
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 之前的table已经初始化过
    if (oldTab != null) {
        // 复制元素,重新进行hash
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

重要方法

getNode

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // table已经初始化,长度大于0,根据hash寻找table中的项也不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 桶中第一项(数组元素)相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个结点
        if ((e = first.next) != null) {
            // 为红黑树结点
            if (first instanceof TreeNode)
                // 在红黑树中查找
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 否则,在链表中查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

putMapEntries

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            // 未初始化,s为m的实际元素个数
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            // 计算得到的t大于阈值,则初始化阈值
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

clone

public Object clone() {
        HashMap<K,V> result;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

从源码中可以看出clone方法虽然生成了新的HashMap对象,新的HashMap中的table数组虽然也是新生成的,但是数组中的元素还是引用以前的HashMap中的元素。这就导致在对HashMap中的元素进行修改的时候,即对数组中元素进行修改,会导致原对象和clone对象都发生改变,但进行新增或删除就不会影响对方,因为这相当于是对数组做出的改变,clone对象新生成了一个数组。

HashMap变动

hashMap在jdk1.8之前:

HashMap的数据结构就是用的链表散列,将需要存储的key和value转变成Entry类
通过key、value封装成一个entry对象,然后通过key的值来计算该entry的hash值,通过entry的hash值和数组的长度length来计算出entry放在数组中的哪个位置上面,如果这个位置上有其他的元素,则通过链表来存储这个元素

jdk1.8之后

hashmap的数据结构是:数组+链表+红黑树

HashMap阅读感想

1)要知道hashMap在JDK1.8以前是一个链表散列这样一个数据结构,而在JDK1.8以后是一个数组加链表加红黑树的数据结构。

2)通过源码的学习,hashMap是一个能快速通过key获取到value值得一个集合,原因是内部使用的是hash查找值得方法。

说明

本文是本人撰写,如果本文让你有些许收获或感悟,我感到荣幸。如果对这篇文章有不同的意见或发现错误,欢迎留言纠正或者联系我:zlh8013gsf@126.com

©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页