比特币的时间幂律模型及其协整性再探讨

本文是对 Harold Christopher Burger 和 Peter Vijn 论文的解读,讨论了比特币时间幂律模型及其与协整性的关系。文章指出,尽管协整性在严格意义上不可能存在于时间相关模型中,但基于时间的幂律模型和S2F模型的残差都是平稳的,这表明它们在统计上是有效的。通过对时间序列的分析,作者驳斥了模型无效的观点,并强调模型的预测能力证明了其有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编译 | 刘教链

教链按:本篇是译自 Harold Christopher Burger 及 Peter Vijn 合作的论文《比特币的时间幂律模型及其协整性再探讨》(Bitcoin’s time-based power-law and cointegration revisited, 2024.1.31),理论性较强,适合有一定统计学基础的读者阅读。为了便于基础不够的读者理解,教链先做一些简单的阐释。

关于所谓的时间幂律模型,教链在过去数载曾写过多篇文章进行介绍。最早应该是在2021年7月24日教链文章《比特币的价格走廊》中对这一模型进行过专门的介绍。后来,又多次在文章中引用过该模型,典型例子比如2023年1月16日教链文章《比特币2023年价格前瞻》。继而,教链在此模型的基础上率先提出了“呼吸理论”。该理论于2023年1月16日文章提出后,又在2023年12月6日文章《【十年之约#13】比特币在呼吸》中进行了复盘,并构成了2023年12月星球内部资料《2023年年终复盘展望报告》的理论基础之一。这一点,在2024年3月16日教链文章《BTC现阶段或不具备长期下跌基础》,以及3月24日星球会员私董会(3月24日教链内参《24日私董会数往知来,'24年后市如何?》)都进行了复盘和回顾。详细情况各位读者可以点击上述各篇文章或内参,具体查阅。

在3月24日星球会员私董会,以及此前文章,比如2023年2月17日教链文章《2024奇点将至:人类尚未准备好迎接S2F大于100的巨硬资产》中,都提及了另外一个指标,即所谓的S2F硬度。关于什么是S2F硬度,不了解的朋友可以回顾一下教链曾写过的一篇小文《小科普:什么是S2F(Stock-to-Flow)》(2023.2.19文章)。业内有一位比较知名的匿名分析师PlanB一直比较推崇用S2F硬度来和价格进行建模,这就是所谓的S2F模型。不过很可惜:S2F模型是错的。但请注意,这不代表S2F这个指标没有意义,只是说,S2F硬度的变化,与价格的关系,不像PlanB所描绘的那样“激进”。

下面这个图就很清晰地展示了幂律模型和S2F模型的相对关系:

a93dfdb1ade863636f062a5f1f786c1d.jpeg

显然,S2F模型认为时间线性流逝就可以推动价格的指数增长,而幂律模型则认为时间的指数流逝才能推动价格的指数增长。

教链倾向于使用S2F硬度来形象化产量减半所导致的“相变”,但使用幂律模型把比特币变换到双对数空间中进行线性回归。幂律模型的优雅特别有支持向量机(SVM)的神韵,所以甚合我意。

下面,就是 H. Burger & P. Vijn 的论文。Enjoy!

* * *

导言

比特币基于时间的幂律,最初由 Giovanni Santostasi 于 2014 年提出,我们于 2019 年重新表述(作为走廊或三参数模型),描述了比特币价格与时间之间的关系。具体来说,该模型描述了比特币创世区块之后的天数对数与比特币美元价格对数之间的线性关系。

8665bbea5e788ece823bc2cb3a94ab11.jpeg

该模型吸引了包括 Marcel Burger、Tim Stolte 和 Nick Emblow 在内的多位批评家,他们各自撰文对该模型进行了 "反驳"。在本文中,我们将逐一剖析这三个批评中的一个关键论点:时间与价格之间不存在协整性(cointegration)的说法,认为该模型 "无效",只是表明了一种虚假的关系。

真的是这样吗?

在本文中,我们将对这一问题进行深入研究。这使我们认定,严格来说,协整不可能存在于时间相关模型中,包括我们自己的模型。然而,不可否认的是,协整所必需的统计属性之一在基于时间的幂律模型中是存在的。因此,我们得出结论认为,基于时间的幂律模型在狭义上是协整的,我们的批评是错误的,该模型是完全有效的。我们证明,这一结论同样适用于“存量增量比”(S2F)模型,以及在长期股票市场指数价格中观察到的指数增长。

概念入门

啥是协整性

你已经迷失方向了吗?也许你对“协整性”一词并不熟悉?别担心:因果推论和非虚假关系领域的专家、《为什么之书》的作者 Judea Pearl 声称自己对这个问题一无所知。我们将努力充分阐明手头的相关术语。

在推特上比特币相关话题讨论中,关于协整性的争论非常有趣,而且相当引人入胜。许多“存量增量比”和“幂律”的追随者都感到困惑。有兴趣的读者可以通过搜索“什么是协整”来亲眼目睹这一点。随着时间的推移,一些贡献者似乎已经掌握并完善了他们的理解,而另一些贡献者则仍然感到困惑、转换阵营或迷失方向。直到现在,我们才开始关注这个话题。

先了解一些背景情况

随机过程涉及随机变量。随机变量的值不是预先确定的。与此相反,确定性过程可以提前精确预测 —— 它的方方面面都是事先已知的。股票市场价格等属于随机变量,因为我们无法提前预测资产的价格。因此,我们将股票或比特币价格等时间序列视为随机变量的观测值。

相反,时间的流逝遵循确定性模式。每秒钟都有一秒钟过去,不存在任何不确定性。因此,事件发生后的持续时间是一个确定变量。

一个信号的固定性

在研究协整之前,我们先来看看协整的基础概念:平稳性(stationary):

ccf0b21d81d44d1424eb98f1e71d9727.jpeg

图释:将橙线差分一次,就得到了蓝线。对 I(1)时间序列差分一次,就得到了 I(0)时间序列。

平稳过程(stationary process)是一种随机过程(stochastic process),从广义上讲,它在一段时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值