ZOJ 3328 Wu Xing(五行)

115 篇文章 0 订阅

ZOJ  3328   Wu Xing(五行)                          题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3753

两行坑跌小水题

background knowledge:五行知识,详见Introduction(没用)

题目大意:有n个顶点的有向图,每两个顶点之间都有一条边。给出interaction的定义『1、这是一个有向边集;2、有且仅有一条开始边;3、有且仅有一条结束边;4、最后成环』,问最少有多少个interaction,就能把图全覆盖。

题目分析:以下分析建立在一个基础上,每一笔都能画出一个n条边的环(而事实似乎就是如此)。所以有了如下分析(上面的纯属个人见解,如有出入,还望大神指正。下面是大神的分析)。我们可以看到,他说要是任意两个点都有联系,看到这里,马上可以想到,要满足这个条件, 必须需要n*(n-1)/2条边,于是,换一种思考,该题目就可以理解为,在n*(n-1)/2条边中可以构成几个环。如果想到这里,你又开始去画点画边,那估计最后结果还是要悲剧。至少我是画不出,就算画出了也不知道到底是否是最小个数的环。 所以我们接着继续分析。。。抛开怎么连线不管, 往整体方向想,要构成一个环, n个点必须要n条边,可以理解,最终所有环所构成的边,都不会超过n*(n-1)/2条边。 所以每条边都在一个或几个环内,(其中不同的环可以共用一条边)。 所以至少有(n-1)/2个环, 如果可以整除,那么商就是答案。如果不能整除呢? 那么余下的边必定可以再组成一个环(必定的嘛)。所以如果(n-1)%2 != 0, 那么答案就等于(n-1)/2 +1;结果就是和n/2的结果一样,如果有些同学,开玩笑地试了这个公式,恭喜你,你ac了。(踩到狗屎了,呵呵!)

#include<stdio.h>
int main()
{
    int n;
    while(scanf("%d",&n),n)
        printf("%d\n",n/2);
    return 0;
}
PS:别做梦了,只有代码容易而已~~!!






  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值