计算机视觉中的滤波

本文介绍了计算机视觉中滤波的基本概念,包括线性、非线性、自适应滤波器及其应用。讨论了滤波的目的,如图像处理、特征提取和模式检测。文章还详细阐述了边界填充的方法,如常数填充、周期填充、复制填充和对称填充,以及滤波操作的全、同、有效三种填充模式。此外,提到了滤波在去噪、平滑、锐化等方面的应用,以及自适应滤波器在处理与图像内容耦合噪声时的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


博客: 博客园 | CSDN | blog

写在前面

http://setosa.io/ev/image-kernels/

在计算机视觉中,滤波filtering)是指

Image filtering: compute function of local neighborhood at each position.

—— from CAP5415–Fall 2014-Lecture 2 (08/21/2014)–Filtering

In the broadest sense of the term “filtering”, the value of the filtered image at a given location is a function of the values of the input image in a small neighborhood of the same location.

—— from Bilateral Filtering for Gray and Color Images

滤波本质上是一种特殊的函数,其作用在图像的每个位置,通过定义的计算方式得到输出,输出的值用于替换图像当前位置(滤波器中心)的值。

令滤波函数为 g ( x ;   w ) g(x;\ w) g(x; w) ,其中 x x x为图像的局部邻域, w w w为滤波器的权重,滤波器可以分成如下3类,

  • 线性滤波器Linear filter):线性滤波的输出为输入的线性组合,即 g = w ⋅ x g = w \cdot x g=wx,线性滤波器最为常见;
  • 非线性滤波器Non-Linear Filter):不满足上条性质的为非线性滤波,典型的非线性滤波如最大值/最小值/中值滤波、膨胀/腐蚀等;
  • 自适应滤波器Adaptive filter):线性滤波中的 w w w在滑动过程中固定不变(与图像内容独立无关),自适应滤波的 w w w在滑动过程中会随着窗口内像素的性质和结构发生变化。直觉上,自适应滤波器在某些复杂情况下可能取得更好的效果,但相对线性滤波器,其计算代价更高也更难优化加速。

从滤波目的或者解决的问题上,也可分成3类:

filtering

  • 图像处理:并不想从图像中提取信息,只想将图像转换成期望的样子;
  • 特征提取:想从图像中提取到某些信息,比如梯度、二阶导、纹理等;
  • 模式检测:想知道图像局部长什么样子,像哪种模式,比如模板匹配、稀疏表示等;

这两种分类方式并不是割裂的,而是互相交叉的,用于图像处理的滤波器也有线性、非线性、自适应之分。

Padding

滤波操作不可避免的一个问题是边界如何处理,当滤波器的中心压在图像边界处时,滤波器会有一部分落在图像外,但图像外并没有像素,该如何处理?通常需要对图像进行填充(padding),填充需要解决2个问题,填充的元素取什么值以及填充多少个元素

对于延拓元素的取值,通常有4种方式,

  • 常数填充(0填充):填充的元素取相同的常数值
  • 周期填充(circular):认为图像的上下左右被与自身相同的图像包围着
  • 复制填充(replicate):复制图像边界的元素
  • 对称填充(symmetric):填充的元素与图像关于边界对称

4种填充方式依次如下图所示,

https://www.cs.toronto.edu/~urtasun/courses/CV/lecture02.pdf

对于填充多少个元素,通常有3种方式,令滤波器的大小为$g\times g $ ,图像大小为 f × f f \times f f×f

  • full:边界分别填充 g − 1 g-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值