地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
解题思路:
用DFS解决这个问题,这里有一个隐性优化,即每次搜索的时候只需要向下或者向右,而不用四个方向都走。
class Solution {
public:
int get(int x) {
int num = 0;
while (x > 0) {
num += x % 10;
x /= 10;
}
return num;
}
int res = 0;
int movingCount(int m, int n, int k) {
vector<vector<int>> visited(m, vector<int>(n, 0));
dfs(visited, 0, 0, m, n, k);
return res;
}
void dfs(vector<vector<int>>& visited, int x, int y, int m, int n, int k) {
//terminator
if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y] == 1) return;
if ((get(x) + get(y)) > k) return;
//drill down
res++;
visited[x][y] = 1;
//dfs(visited, x - 1, y, m, n, k);
dfs(visited, x + 1, y, m, n, k);
//dfs(visited, x, y - 1, m, n, k);
dfs(visited, x, y + 1, m, n, k);
//visited[x][y] == 0;
}
};
BFS
class Solution {
public:
int get(int x) {
int num = 0;
while(x > 0) {
num += x % 10;
x /= 10;
}
return num;
}
//BFS
int movingCount(int m, int n, int k) {
queue<pair<int, int>> que;
vector<vector<int>> visited(m, vector<int>(n, 0));
int dx[2] = {0, 1};
int dy[2] = {1, 0};
que.push(make_pair(0, 0));
visited[0][0] = 1;
int res = 1;
while(!que.empty()) {
auto tmp = que.front();
que.pop();
for(int i = 0; i < 2; ++i) {
int tx = dx[i] + tmp.first;
int ty = dy[i] + tmp.second;
if(tx >= m || ty >= n || visited[tx][ty] || get(tx) + get(ty) > k) continue;
que.push(make_pair(tx, ty));
visited[tx][ty] = 1;
++res;
}
}
return res;
}
};