求小于正整数n的数中与n互素的数的个数C
由唯一分解定理,n = p1^a1 * p2^a2 * …… * pk ^ ak (pi 均是素数)
由容斥原理(参考容斥原理那一篇)得
C = n - n/p1 - n/p2 - …… - n/pk + n/(p1*p2) + n/(p1*p3) + …… + n/(p(k-1)*pk) - n/(p1*p2*p3) ………………
由神奇的数学定理,上式可变换如下
C = n * (1 - 1/p1) * (1 - 1/p2)* …… * (1-1/pk) 每次从括号里选出1或-1/pi,全部展开再乘以n,即上式的推导过程
即C = n * ((p1-1) / p1) * ((p2-1) / p2) * …… * ((pk-1) / pk)
int euler(int n){
int ans = n;
for(int i = 2; i*i <= n; i++){
if(n%i == 0){
ans = ans/i*(i-1);//ans -= ans/i;
while(ans%i == 0) ans /= i;
}
}
return n>1 ? ans/n*(n-1) : ans;
}
一个数x的素因子之和为euler(x)*x/2
根据欧拉函数的性质可得到欧拉函数的打表
int num[maxn] = {0, 1};
void get_euler(int n){
for(int i = 2; i <= n; i++){
if(!num[i]){
for(int j = i; j <= n; j += i){
if(!num[j]) num[j] = j;
num[j] = num[j]/i*(i-1);
}
}
}
}