欧拉函数

求小于正整数n的数中与n互素的数的个数C

由唯一分解定理,n =  p1^a1 * p2^a2 * …… * pk ^ ak (pi 均是素数)

由容斥原理(参考容斥原理那一篇)得

C = n - n/p1 - n/p2 - …… - n/pk + n/(p1*p2) + n/(p1*p3) + …… +  n/(p(k-1)*pk) - n/(p1*p2*p3) ………………

由神奇的数学定理,上式可变换如下

C = n * (1 - 1/p1) * (1 - 1/p2)* …… * (1-1/pk)    每次从括号里选出1或-1/pi,全部展开再乘以n,即上式的推导过程

即C = n * ((p1-1) / p1) * ((p2-1) / p2) * …… * ((pk-1) / pk)

int euler(int n){
	int ans = n;
	for(int i = 2; i*i <= n; i++){
		if(n%i == 0){
			ans = ans/i*(i-1);//ans -= ans/i;
			while(ans%i == 0) ans /= i;
		}
	}
	return n>1 ? ans/n*(n-1) : ans;
} 

一个数x的素因子之和为euler(x)*x/2

根据欧拉函数的性质可得到欧拉函数的打表

int num[maxn] = {0, 1};
void get_euler(int n){
	for(int i = 2; i <= n; i++){
		if(!num[i]){
			for(int j = i; j <= n; j += i){
				if(!num[j]) num[j] = j;
				num[j] = num[j]/i*(i-1);
			}
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值