poj1679——The Unique MST(次小生成树,Kruskal)

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
1. V’ = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output

3
Not Unique!

题意是求一个图的最小生成树是否唯一。
思路就是求出次小生成树,判断次小生成树的权值与最小生成树是否相等。次小生成树的求法是枚举最小生成树的每条边,把其中一条边去掉,找到这两点上其他的边,剩下的边形成最小生成树

#include <iostream>
#include <algorithm>
#include <cstdio>
#define MAXN 105
using namespace std;
struct Node
{
    int x,y,w;
    bool flag;
};
Node edge[MAXN*MAXN];
bool cmp(Node a,Node b)
{
    return a.w<b.w;
}
int n,m,father[MAXN];
int kruskal(int num,int m)
{
    int ans=0,cnt=1;
    for(int i=1; i<=m; ++i)
    {
        if(i==num)  //把第一棵最小生成数的第num边去掉
            continue;
        int s1=father[edge[i].x];
        int s2=father[edge[i].y];
        if(s1!=s2)
        {
            cnt++;
            ans+=edge[i].w;
            father[s2]=s1; //加入生成树的边,加入相同的并查集
            for(int j=0; j<=n; ++j)
                if(father[j]==s2)
                    father[j]=s1;
        }
    }
    if(cnt!=n)
        return -1;
    else
        return ans;
}
int main()
{
    int t,ans;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1; i<=n; ++i)
            father[i]=i;
        for(int i=1; i<=m; ++i)
        {
            scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
            edge[i].flag=false;
        }
        sort(edge+1,edge+1+m,cmp);
        ans=0;
        for(int i=1; i<=m; ++i)
        {
            int s1=father[edge[i].x];
            int s2=father[edge[i].y];
            if(s1!=s2)
            {
                edge[i].flag=true;  //最小生成数做记号
                ans+=edge[i].w;
                father[s2]=s1;
                for(int j=0; j<=n; ++j)
                    if(father[j]==s2)
                        father[j]=s1;
            }
        }
        bool flag=0;
        for(int i=1; i<=m; ++i) //枚举最小生成树的每条边
        {
            if(edge[i].flag==false)
                continue;
            int sum=0;
            for(int j=1; j<=n; ++j)
                father[j]=j;
            sum=kruskal(i,m); //把第i条边去掉
            if(sum==ans)
            {
                flag=true;
                break;
            }
        }
        if(flag)
            printf("Not Unique!\n");
        else
            printf("%d\n",ans);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值