poj1845——Sumdiv(数论+幂的因子和)

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output

The only line of the output will contain S modulo 9901.
Sample Input

2 3
Sample Output

15
Hint

2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).

求A^B的因子和
不想多说什么,都是定理http://blog.csdn.net/lyy289065406/article/details/6648539

#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <set>
#include <math.h>
#include <algorithm>
#include <queue>
#include <iomanip>
#include <map>
#define INF 0x3f3f3f3f
#define MAXN 10005
#define Mod 9901
using namespace std;
long long power(long long p,long long n)
{
    long long tmp=1;
    while(n>0)
    {
        if(n%2)
            tmp=(tmp*p)%Mod;
        n/=2;
        p=(p*p)%Mod;
    }
    return tmp;
}
long long sum(long long p,long long n)
{
    if(n==0)
        return 1;
    if(n%2==1)
        return (sum(p,n/2)*(1+power(p,n/2+1)))%Mod;
    else
        return (sum(p,n/2-1)*(1+power(p,n/2+1))+power(p,n/2))%Mod;
}
int main()
{
    long long a,b;
    long long p[MAXN],n[MAXN];
    while(~scanf("%I64d%I64d",&a,&b))
    {
        int k=0;
        for(int i=2;i*i<=a;)
        {
            if(a%i==0)
            {
                p[k]=i;
                n[k]=0;
                while(a%i==0)
                {
                    n[k]++;
                    a/=i;
                }
                k++;
            }
            if(i==2)
                i++;
            else
                i+=2;
        }
        if(a!=1)
        {
            p[k]=a;
            n[k]=1;
            k++;
        }
        long long ans=1;
        for(int i=0;i<k;++i)
            ans=(ans*(sum(p[i],n[i]*b)%Mod))%Mod;
        printf("%I64d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值