spark sql对seq值的包装

spark sql对seq(s1, s2, s3, …)值的包装,seq的每个元素si会被包装成一个Row
如果si为一个简单值,则生成一个只包含一个value列的Row
如果si为一个N-Tuple,则生成一个包含N列的Row

特别的,如果N-Tuple是一元组,则视为非元组,即生成一个只包含一个value列的Row

scala> Seq(("bluejoe"),("alex")).toDF().show
+-------+
|  value|
+-------+
|bluejoe|
|   alex|
+-------+

scala> Seq("bluejoe","alex").toDF().show
+-------+
|  value|
+-------+
|bluejoe|
|   alex|
+-------+

scala> Seq(("bluejoe",1),("alex",0)).toDF().show
+-------+---+
|     _1| _2|
+-------+---+
|bluejoe|  1|
|   alex|  0|
+-------+---+

我特意编写了如下测试用例,验证了这种情况:

    @Test
    def testEncoderSchema() {
        val spark = SparkSession.builder.master("local[4]")
            .getOrCreate();
        val sqlContext = spark.sqlContext;
        import sqlContext.implicits._
        import org.apache.spark.sql.catalyst.encoders.encoderFor
        val schema1 = encoderFor[String].schema;
        val schema2 = encoderFor[(String)].schema;
        val schema3 = encoderFor[((String))].schema;

        Assert.assertEquals(schema1, schema2);
        Assert.assertEquals(schema1, schema3);
    }
发布了172 篇原创文章 · 获赞 286 · 访问量 182万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览